Laser hardening is a laser assisted process devoted to the surface hardening of the mechanical components. This process is highly suitable for medium carbon steels with carbon content comprised between 0.2 - 0.6% or for low alloy steels which are usually surface hardened during their manufacturing process. Laser hardening technology is gaining a great industrial interest in the last years in fact, the possibility of integrating the heating source directly on the production line, together with the absence of the quenching medium, meets the production needs of modern industries. Laser hardening optimization could be complex especially when tempering due to multiple passes effects must be considered. Many research studies have been proposed in the last years with the aim to predict the optimal laser process parameters such as laser power density, laser beam velocity and scanning strategies. Many Authors agree with the assumption that the whole austenite resulting from the heating is transformed into martensite during the quenching. This is a valid approximation for single pass but could be a rough hypothesis in multiple-passes when the cooling rate could be in laser hardening, hysteresis phenomena should be taken into account for pearlite to austenite and martensite to austenite transformations during heating and martensite tempering during multiple passes. In this paper the crucial problems that have to be faced in laser surface hardening modelling are discussed according to the current literature. In particular, partial austenitization of the pearlite is suggested as a solution of the hardness prediction of the profile depth. Then three transformation parameters are proposed to take into account the hysteresis phenomena in martensite and pearlite transformations into austenite and martensite tempering.Finally, experimental examples are proposed to validate the assumptions.

L. Orazi, A. Fortunato, G. Tani, G. Campana, A. Ascari, G. Cuccolini (2008). A New Computationally Efficient Method into Laser Hardening Modelling,. s.l : ASME.

A New Computationally Efficient Method into Laser Hardening Modelling,

FORTUNATO, ALESSANDRO;TANI, GIOVANNI;CAMPANA, GIAMPAOLO;ASCARI, ALESSANDRO;
2008

Abstract

Laser hardening is a laser assisted process devoted to the surface hardening of the mechanical components. This process is highly suitable for medium carbon steels with carbon content comprised between 0.2 - 0.6% or for low alloy steels which are usually surface hardened during their manufacturing process. Laser hardening technology is gaining a great industrial interest in the last years in fact, the possibility of integrating the heating source directly on the production line, together with the absence of the quenching medium, meets the production needs of modern industries. Laser hardening optimization could be complex especially when tempering due to multiple passes effects must be considered. Many research studies have been proposed in the last years with the aim to predict the optimal laser process parameters such as laser power density, laser beam velocity and scanning strategies. Many Authors agree with the assumption that the whole austenite resulting from the heating is transformed into martensite during the quenching. This is a valid approximation for single pass but could be a rough hypothesis in multiple-passes when the cooling rate could be in laser hardening, hysteresis phenomena should be taken into account for pearlite to austenite and martensite to austenite transformations during heating and martensite tempering during multiple passes. In this paper the crucial problems that have to be faced in laser surface hardening modelling are discussed according to the current literature. In particular, partial austenitization of the pearlite is suggested as a solution of the hardness prediction of the profile depth. Then three transformation parameters are proposed to take into account the hysteresis phenomena in martensite and pearlite transformations into austenite and martensite tempering.Finally, experimental examples are proposed to validate the assumptions.
2008
Proceedings of the Int. Conf. ASME MSEC 2008
L. Orazi, A. Fortunato, G. Tani, G. Campana, A. Ascari, G. Cuccolini (2008). A New Computationally Efficient Method into Laser Hardening Modelling,. s.l : ASME.
L. Orazi; A. Fortunato; G. Tani; G. Campana; A. Ascari; G. Cuccolini
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/73200
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact