We report a multiwavelength study of the massive ( M-* greater than or similar to 10(11)M(circle dot)), z similar to 2 star-forming galaxy GMASS 0953, which hosts an obscured AGN. We combined near-infrared observations of the GNIRS, SINFONI and KMOS spectrographs to study the kinematics of the [O III] lambda 5007 and H alpha emission lines. Our analysis shows that GMASS 0953 may host an ionized disc extending up to 13 kpc, which rotates at a velocity of V-ion = 203(-20)(+17) km s(-1) at the outermost radius. Evidence of rotation on a smaller scale (R similar to 1 kpc) arises from the CO(J = 6-5) line. The central velocity V-CO = 320(-53)(+92) km s(-1) traced by the molecular gas is higher than V-ion, suggesting that the galaxy harbours a multiphase disc with a rotation curve that peaks in the very central regions. The galaxy appears well located on the z = 0 baryonic Tully-Fisher relation. We also discuss the possibility that the [O III] lambda 5007 and H alpha velocity gradients are due to a galactic-scale wind. Besides, we found evidence of an AGN-driven outflow traced by a broad blueshifted wing affecting the [O III] lambda 5007 line, which presents a velocity offset Delta v = -535 +/- 152 km s(-1) from the systemic velocity. Because of the short depletion time-scale (tau(dep) similar to 10(8) yr) due to gas ejection and gas consumption by star formation activity, GMASS 0953 may likely evolve into a passive galaxy. However, the role of the AGN in depleting the gas reservoir of the galaxy is quite unclear because of the uncertainties affecting the outflow rate.
Loiacono, F., Talia, M., Fraternali, F., Cimatti, A., Di Teodoro, E.M., Caminha, G.B. (2019). A multiwavelength study of a massive, active galaxy at z ∼ 2: coupling the kinematics of the ionized and molecular gas. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 489(1), 681-698 [10.1093/mnras/stz2170].
A multiwavelength study of a massive, active galaxy at z ∼ 2: coupling the kinematics of the ionized and molecular gas
Loiacono, Federica
Writing – Original Draft Preparation
;Talia, MargheritaSupervision
;Fraternali, FilippoSupervision
;Cimatti, AndreaSupervision
;
2019
Abstract
We report a multiwavelength study of the massive ( M-* greater than or similar to 10(11)M(circle dot)), z similar to 2 star-forming galaxy GMASS 0953, which hosts an obscured AGN. We combined near-infrared observations of the GNIRS, SINFONI and KMOS spectrographs to study the kinematics of the [O III] lambda 5007 and H alpha emission lines. Our analysis shows that GMASS 0953 may host an ionized disc extending up to 13 kpc, which rotates at a velocity of V-ion = 203(-20)(+17) km s(-1) at the outermost radius. Evidence of rotation on a smaller scale (R similar to 1 kpc) arises from the CO(J = 6-5) line. The central velocity V-CO = 320(-53)(+92) km s(-1) traced by the molecular gas is higher than V-ion, suggesting that the galaxy harbours a multiphase disc with a rotation curve that peaks in the very central regions. The galaxy appears well located on the z = 0 baryonic Tully-Fisher relation. We also discuss the possibility that the [O III] lambda 5007 and H alpha velocity gradients are due to a galactic-scale wind. Besides, we found evidence of an AGN-driven outflow traced by a broad blueshifted wing affecting the [O III] lambda 5007 line, which presents a velocity offset Delta v = -535 +/- 152 km s(-1) from the systemic velocity. Because of the short depletion time-scale (tau(dep) similar to 10(8) yr) due to gas ejection and gas consumption by star formation activity, GMASS 0953 may likely evolve into a passive galaxy. However, the role of the AGN in depleting the gas reservoir of the galaxy is quite unclear because of the uncertainties affecting the outflow rate.File | Dimensione | Formato | |
---|---|---|---|
11585_731964.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per accesso libero gratuito
Dimensione
2.96 MB
Formato
Adobe PDF
|
2.96 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.