The availability of inexpensive devices allows nowadays to implement cognitive radio functionalities in large-scale networks such as the internet-of-things and future mobile cellular systems. In this paper, we focus on wideband spectrum sensing in the presence of oversampling, i.e., the sampling frequency of a digital receiver is larger than the signal bandwidth, where signal detection must take into account the front-end impairments of low-cost devices. Based on the noise model of a software-defined radio dongle, we address the problem of robust signal detection in the presence of noise power uncertainty and non-flat noise power spectral density (PSD). In particular, we analyze the receiver operating characteristic of several detectors in the presence of such front-end impairments, to assess the performance attainable in a real-world scenario. We propose new frequency-domain detectors, some of which are proven to outperform previously proposed spectrum sensing techniques such as, e.g., eigenvalue-based tests. The study shows that the best performance is provided by a noise-uncertainty immune energy detector (ED) and, for the colored noise case, by tests that match the PSD of the receiver noise.

On Oversampling-Based Signal Detection / Andrea Mariani, Andrea Giorgetti, Marco Chiani. - In: INTERNATIONAL JOURNAL OF WIRELESS INFORMATION NETWORKS. - ISSN 1068-9605. - ELETTRONICO. - 26:7(2019), pp. 272-284. [10.1007/s10776-019-00444-9]

On Oversampling-Based Signal Detection

Andrea Giorgetti
;
Marco Chiani
2019

Abstract

The availability of inexpensive devices allows nowadays to implement cognitive radio functionalities in large-scale networks such as the internet-of-things and future mobile cellular systems. In this paper, we focus on wideband spectrum sensing in the presence of oversampling, i.e., the sampling frequency of a digital receiver is larger than the signal bandwidth, where signal detection must take into account the front-end impairments of low-cost devices. Based on the noise model of a software-defined radio dongle, we address the problem of robust signal detection in the presence of noise power uncertainty and non-flat noise power spectral density (PSD). In particular, we analyze the receiver operating characteristic of several detectors in the presence of such front-end impairments, to assess the performance attainable in a real-world scenario. We propose new frequency-domain detectors, some of which are proven to outperform previously proposed spectrum sensing techniques such as, e.g., eigenvalue-based tests. The study shows that the best performance is provided by a noise-uncertainty immune energy detector (ED) and, for the colored noise case, by tests that match the PSD of the receiver noise.
2019
On Oversampling-Based Signal Detection / Andrea Mariani, Andrea Giorgetti, Marco Chiani. - In: INTERNATIONAL JOURNAL OF WIRELESS INFORMATION NETWORKS. - ISSN 1068-9605. - ELETTRONICO. - 26:7(2019), pp. 272-284. [10.1007/s10776-019-00444-9]
Andrea Mariani, Andrea Giorgetti, Marco Chiani
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/731760
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact