Topological Persistence has proven to be a promising framework for dealing with problems concerning shape analysis and comparison. In this contexts, it was originally introduced by taking into account 1-dimensional properties of shapes, modeled by real-valued functions. More recently, Topological Persistence has been generalized to consider multidimensional properties of shapes, coded by vector-valued functions. This extension has led to introduce suitable shape descriptors, named the multidimensional persistence Betti numbers functions, and a distance to compare them, the so-called multidimensional matching distance. In this paper we propose a new computational framework to deal with the multidimensional matching distance. We start by proving some new theoretical results, and then we use them to formulate an algorithm for computing such a distance up to an arbitrary threshold error.

Andrea Cerri, Patrizio Frosini (2020). A New Approximation Algorithm for the Matching Distance in Multidimensional Persistence. JOURNAL OF COMPUTATIONAL MATHEMATICS, 38(2), 291-309 [10.4208/jcm.1809-m2018-0043].

A New Approximation Algorithm for the Matching Distance in Multidimensional Persistence

Patrizio Frosini
2020

Abstract

Topological Persistence has proven to be a promising framework for dealing with problems concerning shape analysis and comparison. In this contexts, it was originally introduced by taking into account 1-dimensional properties of shapes, modeled by real-valued functions. More recently, Topological Persistence has been generalized to consider multidimensional properties of shapes, coded by vector-valued functions. This extension has led to introduce suitable shape descriptors, named the multidimensional persistence Betti numbers functions, and a distance to compare them, the so-called multidimensional matching distance. In this paper we propose a new computational framework to deal with the multidimensional matching distance. We start by proving some new theoretical results, and then we use them to formulate an algorithm for computing such a distance up to an arbitrary threshold error.
2020
Andrea Cerri, Patrizio Frosini (2020). A New Approximation Algorithm for the Matching Distance in Multidimensional Persistence. JOURNAL OF COMPUTATIONAL MATHEMATICS, 38(2), 291-309 [10.4208/jcm.1809-m2018-0043].
Andrea Cerri; Patrizio Frosini
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/730033
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 0
social impact