Let L(s) =sum a(n) be a Dirichlet series where a(n) is a bounded completely multiplicative function. We prove that if L(s) extends to a holomorphic function on the open half space Re s > 1 − , > 0 and L(1) = 0 then such a half space is a zero free region of the Riemann zeta function (s). Similar results are proven for completely multiplicative functions defined on the space of the ideals of the ring of the algebraic integers of a number field of finite degree.

Sergio Venturini (2020). Non vanishing of Dirichlet series of completely multiplicative functions. RIVISTA DI MATEMATICA DELLA UNIVERSITÀ DI PARMA, 11(1), 153-180.

Non vanishing of Dirichlet series of completely multiplicative functions

Sergio Venturini
2020

Abstract

Let L(s) =sum a(n) be a Dirichlet series where a(n) is a bounded completely multiplicative function. We prove that if L(s) extends to a holomorphic function on the open half space Re s > 1 − , > 0 and L(1) = 0 then such a half space is a zero free region of the Riemann zeta function (s). Similar results are proven for completely multiplicative functions defined on the space of the ideals of the ring of the algebraic integers of a number field of finite degree.
2020
Sergio Venturini (2020). Non vanishing of Dirichlet series of completely multiplicative functions. RIVISTA DI MATEMATICA DELLA UNIVERSITÀ DI PARMA, 11(1), 153-180.
Sergio Venturini
File in questo prodotto:
File Dimensione Formato  
Riv_Parma_11-1-2020_08.pdf

accesso riservato

Descrizione: Unico file suddiviso in sette sezioni
Tipo: Versione (PDF) editoriale
Licenza: Licenza per accesso riservato
Dimensione 306.4 kB
Formato Adobe PDF
306.4 kB Adobe PDF   Visualizza/Apri   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/729849
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact