Let L(s) =sum a(n) be a Dirichlet series where a(n) is a bounded completely multiplicative function. We prove that if L(s) extends to a holomorphic function on the open half space Re s > 1 − , > 0 and L(1) = 0 then such a half space is a zero free region of the Riemann zeta function (s). Similar results are proven for completely multiplicative functions defined on the space of the ideals of the ring of the algebraic integers of a number field of finite degree.
Sergio Venturini (2020). Non vanishing of Dirichlet series of completely multiplicative functions. RIVISTA DI MATEMATICA DELLA UNIVERSITÀ DI PARMA, 11(1), 153-180.
Non vanishing of Dirichlet series of completely multiplicative functions
Sergio Venturini
2020
Abstract
Let L(s) =sum a(n) be a Dirichlet series where a(n) is a bounded completely multiplicative function. We prove that if L(s) extends to a holomorphic function on the open half space Re s > 1 − , > 0 and L(1) = 0 then such a half space is a zero free region of the Riemann zeta function (s). Similar results are proven for completely multiplicative functions defined on the space of the ideals of the ring of the algebraic integers of a number field of finite degree.File | Dimensione | Formato | |
---|---|---|---|
Riv_Parma_11-1-2020_08.pdf
accesso riservato
Descrizione: Unico file suddiviso in sette sezioni
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per accesso riservato
Dimensione
306.4 kB
Formato
Adobe PDF
|
306.4 kB | Adobe PDF | Visualizza/Apri Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.