We study the structure of the family of radially symmetric ground states and singular ground states for certain elliptic partial differential equations with $p$-Laplacian. We use methods of Dynamical systems such as Melnikov functions, invariant manifolds, and exponential dichotomy.

FRANCA, M., R. JOHNSON (2004). Ground States and Singular Ground States for quasilinear partial differential equation with critical exponent in the perturbative case. ADVANCED NONLINEAR STUDIES, 4(1), 93-120 [https://doi.org/10.1515/ans-2004-0106].

Ground States and Singular Ground States for quasilinear partial differential equation with critical exponent in the perturbative case

FRANCA, Matteo
Membro del Collaboration Group
;
2004

Abstract

We study the structure of the family of radially symmetric ground states and singular ground states for certain elliptic partial differential equations with $p$-Laplacian. We use methods of Dynamical systems such as Melnikov functions, invariant manifolds, and exponential dichotomy.
2004
FRANCA, M., R. JOHNSON (2004). Ground States and Singular Ground States for quasilinear partial differential equation with critical exponent in the perturbative case. ADVANCED NONLINEAR STUDIES, 4(1), 93-120 [https://doi.org/10.1515/ans-2004-0106].
FRANCA, Matteo; R. JOHNSON
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/729322
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 20
social impact