Purpose: Conventional techniques (3D-CRT) for craniospinal irradiation (CSI) are still widely used. Modern techniques (IMRT, VMAT, TomoTherapy®, proton pencil beam scanning [PBS]) are applied in a limited number of centers. For a 14-year-old patient, we aimed to compare dose distributions of five CSI techniques applied across Europe and generated according to the participating institute protocols, therefore representing daily practice. Material and methods: A multicenter (n = 15) dosimetric analysis of five different techniques for CSI (3D-CRT, IMRT, VMAT, TomoTherapy®, PBS; 3 centers per technique) was performed using the same patient data, set of delineations and dose prescription (36.0/1.8 Gy). Different treatment plans were optimized based on the same planning target volume margin. All participating institutes returned their best treatment plan applicable in clinic. Results: The modern radiotherapy techniques investigated resulted in superior conformity/homogeneity-indices (CI/HI), particularly in the spinal part of the target (CI: 3D-CRT:0.3 vs. modern:0.6; HI: 3D-CRT:0.2 vs. modern:0.1), and demonstrated a decreased dose to the thyroid, heart, esophagus and pancreas. Dose reductions of >10.0 Gy were observed with PBS compared to modern photon techniques for parotid glands, thyroid and pancreas. Following this technique, a wide range in dosimetry among centers using the same technique was observed (e.g., thyroid mean dose: VMAT: 5.6–24.6 Gy; PBS: 0.3–10.1 Gy). Conclusions: The investigated modern radiotherapy techniques demonstrate superior dosimetric results compared to 3D-CRT. The lowest mean dose for organs at risk is obtained with proton therapy. However, for a large number of organs ranges in mean doses were wide and overlapping between techniques making it difficult to recommend one radiotherapy technique over another.

Seravalli E., Bosman M., Lassen-Ramshad Y., Vestergaard A., Oldenburger F., Visser J., et al. (2018). Dosimetric comparison of five different techniques for craniospinal irradiation across 15 European centers: analysis on behalf of the SIOP-E-BTG (radiotherapy working group)*. ACTA ONCOLOGICA, 57(9), 1240-1249 [10.1080/0284186X.2018.1465588].

Dosimetric comparison of five different techniques for craniospinal irradiation across 15 European centers: analysis on behalf of the SIOP-E-BTG (radiotherapy working group)*

Rombi B.;
2018

Abstract

Purpose: Conventional techniques (3D-CRT) for craniospinal irradiation (CSI) are still widely used. Modern techniques (IMRT, VMAT, TomoTherapy®, proton pencil beam scanning [PBS]) are applied in a limited number of centers. For a 14-year-old patient, we aimed to compare dose distributions of five CSI techniques applied across Europe and generated according to the participating institute protocols, therefore representing daily practice. Material and methods: A multicenter (n = 15) dosimetric analysis of five different techniques for CSI (3D-CRT, IMRT, VMAT, TomoTherapy®, PBS; 3 centers per technique) was performed using the same patient data, set of delineations and dose prescription (36.0/1.8 Gy). Different treatment plans were optimized based on the same planning target volume margin. All participating institutes returned their best treatment plan applicable in clinic. Results: The modern radiotherapy techniques investigated resulted in superior conformity/homogeneity-indices (CI/HI), particularly in the spinal part of the target (CI: 3D-CRT:0.3 vs. modern:0.6; HI: 3D-CRT:0.2 vs. modern:0.1), and demonstrated a decreased dose to the thyroid, heart, esophagus and pancreas. Dose reductions of >10.0 Gy were observed with PBS compared to modern photon techniques for parotid glands, thyroid and pancreas. Following this technique, a wide range in dosimetry among centers using the same technique was observed (e.g., thyroid mean dose: VMAT: 5.6–24.6 Gy; PBS: 0.3–10.1 Gy). Conclusions: The investigated modern radiotherapy techniques demonstrate superior dosimetric results compared to 3D-CRT. The lowest mean dose for organs at risk is obtained with proton therapy. However, for a large number of organs ranges in mean doses were wide and overlapping between techniques making it difficult to recommend one radiotherapy technique over another.
2018
Seravalli E., Bosman M., Lassen-Ramshad Y., Vestergaard A., Oldenburger F., Visser J., et al. (2018). Dosimetric comparison of five different techniques for craniospinal irradiation across 15 European centers: analysis on behalf of the SIOP-E-BTG (radiotherapy working group)*. ACTA ONCOLOGICA, 57(9), 1240-1249 [10.1080/0284186X.2018.1465588].
Seravalli E.; Bosman M.; Lassen-Ramshad Y.; Vestergaard A.; Oldenburger F.; Visser J.; Koutsouveli E.; Paraskevopoulou C.; Horan G.; Ajithkumar T.; Ti...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/729151
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 57
social impact