We consider second-order parabolic equations with time indepen- dent coefficients. Under reasonable assumptions, it is known that the fun- damental solution satisfies certain Gaussian bounds related to the associated geodesic distance. In this article we prove a sharp unique continuation property at the initial time which matches exactly the above-mentioned kernel bounds.

Albano P., Tataru D. (2004). Unique continuation for second-order parabolic operators at the initial time. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 132, 1077-1085 [10.1090/S0002-9939-03-07227-7].

Unique continuation for second-order parabolic operators at the initial time

ALBANO, PAOLO;
2004

Abstract

We consider second-order parabolic equations with time indepen- dent coefficients. Under reasonable assumptions, it is known that the fun- damental solution satisfies certain Gaussian bounds related to the associated geodesic distance. In this article we prove a sharp unique continuation property at the initial time which matches exactly the above-mentioned kernel bounds.
2004
Albano P., Tataru D. (2004). Unique continuation for second-order parabolic operators at the initial time. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 132, 1077-1085 [10.1090/S0002-9939-03-07227-7].
Albano P.; Tataru D.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/7291
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact