We study the equal rank real forms of affine non-twisted Kac-Moody Lie superalgebras by Cartan automorphisms and Vogan diagrams. We introduce admissible positive root systems and Hermitian real forms, then show that a real form has admissible positive root system if and only if it is Hermitian. As a result, we use the Vogan diagrams to classify the Hermitian real forms.
Chuah, M.-K., Fioresi, R. (2020). Equal rank real forms of affine non-twisted Kac-Moody Lie superalgebras. JOURNAL OF PURE AND APPLIED ALGEBRA, 224(7), 1-18 [10.1016/j.jpaa.2019.106278].
Equal rank real forms of affine non-twisted Kac-Moody Lie superalgebras
Fioresi R.Membro del Collaboration Group
2020
Abstract
We study the equal rank real forms of affine non-twisted Kac-Moody Lie superalgebras by Cartan automorphisms and Vogan diagrams. We introduce admissible positive root systems and Hermitian real forms, then show that a real form has admissible positive root system if and only if it is Hermitian. As a result, we use the Vogan diagrams to classify the Hermitian real forms.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
superaff-jpa.pdf
Open Access dal 10/12/2020
Tipo:
Postprint / Author's Accepted Manuscript (AAM) - versione accettata per la pubblicazione dopo la peer-review
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
1.06 MB
Formato
Adobe PDF
|
1.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


