In this paper we consider a class of non-uniformly elliptic integral functionals and we prove the local boundedness of the quasi-minimizers. Our approach is based on a suitable adaptation of the celebrated De Giorgi proof, and it relies on an appropriate Caccioppoli-type inequality.
Biagi S., Cupini G., Mascolo E. (2020). Regularity of quasi-minimizers for non-uniformly elliptic integrals. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 485(2), 1-34 [10.1016/j.jmaa.2019.123838].
Regularity of quasi-minimizers for non-uniformly elliptic integrals
Cupini G.
;
2020
Abstract
In this paper we consider a class of non-uniformly elliptic integral functionals and we prove the local boundedness of the quasi-minimizers. Our approach is based on a suitable adaptation of the celebrated De Giorgi proof, and it relies on an appropriate Caccioppoli-type inequality.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BCM-11-12-2019.pdf
Open Access dal 08/01/2022
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
484.73 kB
Formato
Adobe PDF
|
484.73 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.