In this paper we consider a class of non-uniformly elliptic integral functionals and we prove the local boundedness of the quasi-minimizers. Our approach is based on a suitable adaptation of the celebrated De Giorgi proof, and it relies on an appropriate Caccioppoli-type inequality.

Biagi, S., Cupini, G., Mascolo, E. (2020). Regularity of quasi-minimizers for non-uniformly elliptic integrals. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 485(2), 1-34 [10.1016/j.jmaa.2019.123838].

Regularity of quasi-minimizers for non-uniformly elliptic integrals

Cupini G.
;
2020

Abstract

In this paper we consider a class of non-uniformly elliptic integral functionals and we prove the local boundedness of the quasi-minimizers. Our approach is based on a suitable adaptation of the celebrated De Giorgi proof, and it relies on an appropriate Caccioppoli-type inequality.
2020
Biagi, S., Cupini, G., Mascolo, E. (2020). Regularity of quasi-minimizers for non-uniformly elliptic integrals. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 485(2), 1-34 [10.1016/j.jmaa.2019.123838].
Biagi, S.; Cupini, G.; Mascolo, E.
File in questo prodotto:
File Dimensione Formato  
BCM-11-12-2019.pdf

Open Access dal 08/01/2022

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 484.73 kB
Formato Adobe PDF
484.73 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/726216
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact