We study a PDE modelling a compressed beam with small friction and subjected to a periodic forcing of small amplitude. We assume that the load of the beam is resonant to the $i$-th eigenvalue of the associated unperturbed problem and prove that, when both forcing and damping are sufficiently small the equation exhibits chaotic behaviour.

F. BATTELLI, M. FECKAN, M. FRANCA (2007). On the chaotic behavior of a compressed beam. DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 4(1), 55-86.

On the chaotic behavior of a compressed beam

M. FRANCA
Membro del Collaboration Group
2007

Abstract

We study a PDE modelling a compressed beam with small friction and subjected to a periodic forcing of small amplitude. We assume that the load of the beam is resonant to the $i$-th eigenvalue of the associated unperturbed problem and prove that, when both forcing and damping are sufficiently small the equation exhibits chaotic behaviour.
2007
F. BATTELLI, M. FECKAN, M. FRANCA (2007). On the chaotic behavior of a compressed beam. DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 4(1), 55-86.
F. BATTELLI; M. FECKAN; M. FRANCA
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/725399
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 5
social impact