We consider a singularly perturbed system where the fast dynamic of the unperturbed problem exhibits a trajectory homoclinic to a critical point. We assume that the slow time system is $1$-dimensional and it admits a unique critical point, which undergoes a bifurcation as a second parameter varies: transcritical, saddle-node, or pitchfork. In this setting Battelli and Palmer proved the existence of a unique trajectory $( ilde{x}(t,ep,la), ilde{y}(t,ep,la))$ homoclinic to the slow manifold. The purpose of this paper is to construct curves which divide the $2$-dimensional parameters space in different areas where $( ilde{x}(t,ep,la), ilde{y}(t,ep,la))$ is either homoclinic, heteroclinic, or unbounded. We derive explicit formulas for the tangents of these curves. The results are illustrated by some examples.
Franca, M. (2012). Bifurcation diagrams for singularly perturbed system. ELECTRONIC JOURNAL ON THE QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 78, 1-23 [10.14232/ejqtde.2012.1.78].
Bifurcation diagrams for singularly perturbed system
FRANCA, Matteo
Membro del Collaboration Group
2012
Abstract
We consider a singularly perturbed system where the fast dynamic of the unperturbed problem exhibits a trajectory homoclinic to a critical point. We assume that the slow time system is $1$-dimensional and it admits a unique critical point, which undergoes a bifurcation as a second parameter varies: transcritical, saddle-node, or pitchfork. In this setting Battelli and Palmer proved the existence of a unique trajectory $( ilde{x}(t,ep,la), ilde{y}(t,ep,la))$ homoclinic to the slow manifold. The purpose of this paper is to construct curves which divide the $2$-dimensional parameters space in different areas where $( ilde{x}(t,ep,la), ilde{y}(t,ep,la))$ is either homoclinic, heteroclinic, or unbounded. We derive explicit formulas for the tangents of these curves. The results are illustrated by some examples.File | Dimensione | Formato | |
---|---|---|---|
Transcritmonomod.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per accesso libero gratuito
Dimensione
314.4 kB
Formato
Adobe PDF
|
314.4 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.