We consider a singularly perturbed system where the fast dynamics of the unperturbed problem exhibits a trajectory homoclinic to a critical point. We assume that the slow time system admits a unique critical point, which undergoes a bifurcation as a second parameter varies: transcritical, saddle-node, or pitchfork. We generalize to the multi-dimensional case the results obtained in a previous paper where the slow-time system is $1$-dimensional. We prove the existence of a unique trajectory $(reve{x}(t,ep,la),reve{y}(t,ep,la))$ homoclinic to a centre manifold of the slow manifold. Then we construct curves in the $2$-dimensional parameters space, dividing it in different areas where $(reve{x}(t,ep,la),reve{y}(t,ep,la))$ is either homoclinic, heteroclinic, or unbounded. We derive explicit formulas for the tangents of these curves. The results are illustrated by some examples.
FRANCA, M. (2013). Bifurcation diagrams for singularly perturbed system: the multi-dimensional case. ELECTRONIC JOURNAL ON THE QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2013(52), 1-36 [10.14232/ejqtde.2013.1.52].
Bifurcation diagrams for singularly perturbed system: the multi-dimensional case
FRANCA, Matteo
Membro del Collaboration Group
2013
Abstract
We consider a singularly perturbed system where the fast dynamics of the unperturbed problem exhibits a trajectory homoclinic to a critical point. We assume that the slow time system admits a unique critical point, which undergoes a bifurcation as a second parameter varies: transcritical, saddle-node, or pitchfork. We generalize to the multi-dimensional case the results obtained in a previous paper where the slow-time system is $1$-dimensional. We prove the existence of a unique trajectory $(reve{x}(t,ep,la),reve{y}(t,ep,la))$ homoclinic to a centre manifold of the slow manifold. Then we construct curves in the $2$-dimensional parameters space, dividing it in different areas where $(reve{x}(t,ep,la),reve{y}(t,ep,la))$ is either homoclinic, heteroclinic, or unbounded. We derive explicit formulas for the tangents of these curves. The results are illustrated by some examples.File | Dimensione | Formato | |
---|---|---|---|
Transcritmulti4.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per accesso libero gratuito
Dimensione
346.69 kB
Formato
Adobe PDF
|
346.69 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.