We consider a singularly perturbed system where the fast dynamics of the unperturbed problem exhibits a trajectory homoclinic to a critical point. We assume that the slow time system admits a unique critical point, which undergoes a bifurcation as a second parameter varies: transcritical, saddle-node, or pitchfork. We generalize to the multi-dimensional case the results obtained in a previous paper where the slow-time system is $1$-dimensional. We prove the existence of a unique trajectory $(reve{x}(t,ep,la),reve{y}(t,ep,la))$ homoclinic to a centre manifold of the slow manifold. Then we construct curves in the $2$-dimensional parameters space, dividing it in different areas where $(reve{x}(t,ep,la),reve{y}(t,ep,la))$ is either homoclinic, heteroclinic, or unbounded. We derive explicit formulas for the tangents of these curves. The results are illustrated by some examples.

FRANCA, M. (2013). Bifurcation diagrams for singularly perturbed system: the multi-dimensional case. ELECTRONIC JOURNAL ON THE QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2013(52), 1-36 [10.14232/ejqtde.2013.1.52].

Bifurcation diagrams for singularly perturbed system: the multi-dimensional case

FRANCA, Matteo
Membro del Collaboration Group
2013

Abstract

We consider a singularly perturbed system where the fast dynamics of the unperturbed problem exhibits a trajectory homoclinic to a critical point. We assume that the slow time system admits a unique critical point, which undergoes a bifurcation as a second parameter varies: transcritical, saddle-node, or pitchfork. We generalize to the multi-dimensional case the results obtained in a previous paper where the slow-time system is $1$-dimensional. We prove the existence of a unique trajectory $(reve{x}(t,ep,la),reve{y}(t,ep,la))$ homoclinic to a centre manifold of the slow manifold. Then we construct curves in the $2$-dimensional parameters space, dividing it in different areas where $(reve{x}(t,ep,la),reve{y}(t,ep,la))$ is either homoclinic, heteroclinic, or unbounded. We derive explicit formulas for the tangents of these curves. The results are illustrated by some examples.
2013
FRANCA, M. (2013). Bifurcation diagrams for singularly perturbed system: the multi-dimensional case. ELECTRONIC JOURNAL ON THE QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2013(52), 1-36 [10.14232/ejqtde.2013.1.52].
FRANCA, Matteo
File in questo prodotto:
File Dimensione Formato  
Transcritmulti4.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per accesso libero gratuito
Dimensione 346.69 kB
Formato Adobe PDF
346.69 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/725360
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact