We consider a discontinuous system exhibiting a, possibly non-smooth, homoclinic trajectory. We assume that the critical point lies on the discontinuity level. We study the persistence of such a trajectory when the system is subject to a smooth non-autonomous perturbation. We use a Mel'nikov type approach and we introduce conditions which enable us to reformulate the problem in the setting of smooth systems so that we can follow the outline of the classical theory.

CALAMAI, A., FRANCA, M. (2013). Mel’nikov methods and homoclinic orbits in discontinuous systems. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 25(3), 733-764 [10.1007/s10884-013-9307-4].

Mel’nikov methods and homoclinic orbits in discontinuous systems

FRANCA, Matteo
Membro del Collaboration Group
2013

Abstract

We consider a discontinuous system exhibiting a, possibly non-smooth, homoclinic trajectory. We assume that the critical point lies on the discontinuity level. We study the persistence of such a trajectory when the system is subject to a smooth non-autonomous perturbation. We use a Mel'nikov type approach and we introduce conditions which enable us to reformulate the problem in the setting of smooth systems so that we can follow the outline of the classical theory.
2013
CALAMAI, A., FRANCA, M. (2013). Mel’nikov methods and homoclinic orbits in discontinuous systems. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 25(3), 733-764 [10.1007/s10884-013-9307-4].
CALAMAI, Alessandro; FRANCA, Matteo
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/725338
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
social impact