We consider the following problem $$ Delta_p u +la u +f(u,r)=0 $$ $$u>0 ; extrm{ in $B$, } quad extrm{ and } quad u=0 extrm{ on $; partial B$.} $$ where $B$ is the unitary ball in $mathbb{R}^n$. Merle and Peletier considered the classical Laplace case $p=2$, and proved the existence of a unique value $la_0^*$ for which a radial singular positive solution exists, assuming $f(u,r)=u^{q-1}$ and $q>2^*:=rac{2n}{n-2}$. Then Dolbeault and Flores proved that, if $q>2^*$ but $q$ is smaller than the Joseph-Lundgren exponent $sigma^*$, then there is an unbounded sequence of radial positive classical solutions for (1), which accumulate at $la=la_0^*$, again for $p=2$.

Flores Isabel, Franca Matteo (2015). Phase plane analysis for radial solutions to supercritical quasilinear elliptic equations in a ball. NONLINEAR ANALYSIS, 125, 128-149 [10.1016/j.na.2015.04.015].

Phase plane analysis for radial solutions to supercritical quasilinear elliptic equations in a ball

Franca Matteo
2015

Abstract

We consider the following problem $$ Delta_p u +la u +f(u,r)=0 $$ $$u>0 ; extrm{ in $B$, } quad extrm{ and } quad u=0 extrm{ on $; partial B$.} $$ where $B$ is the unitary ball in $mathbb{R}^n$. Merle and Peletier considered the classical Laplace case $p=2$, and proved the existence of a unique value $la_0^*$ for which a radial singular positive solution exists, assuming $f(u,r)=u^{q-1}$ and $q>2^*:=rac{2n}{n-2}$. Then Dolbeault and Flores proved that, if $q>2^*$ but $q$ is smaller than the Joseph-Lundgren exponent $sigma^*$, then there is an unbounded sequence of radial positive classical solutions for (1), which accumulate at $la=la_0^*$, again for $p=2$.
2015
Flores Isabel, Franca Matteo (2015). Phase plane analysis for radial solutions to supercritical quasilinear elliptic equations in a ball. NONLINEAR ANALYSIS, 125, 128-149 [10.1016/j.na.2015.04.015].
Flores Isabel; Franca Matteo
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/723366
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact