We propose the first comprehensive treatment of high-dimensional time series factor models with multiple change-points in their second-order structure. We operate under the most flexible definition of piecewise stationarity, and estimate the number and locations of change-points consistently as well as identifying whether they originate in the common or idiosyncratic components. Through the use of wavelets, we transform the problem of change-point detection in the second-order structure of a high-dimensional time series, into the (relatively easier) problem of change-point detection in the means of high-dimensional panel data. Also, our methodology circumvents the difficult issue of the accurate estimation of the true number of factors in the presence of multiple change-points by adopting a screening procedure. We further show that consistent factor analysis is achieved over each segment defined by the change-points estimated by the proposed methodology. In extensive simulation studies, we observe that factor analysis prior to change-point detection improves the detectability of change-points, and identify and describe an interesting ‘spillover’ effect in which substantial breaks in the idiosyncratic components get, naturally enough, identified as change-points in the common components, which prompts us to regard the corresponding change-points as also acting as a form of ‘factors’. Our methodology is implemented in the R package factorcpt, available from CRAN.

Barigozzi M, Cho H, Fryzlewicz P (2018). Simultaneous Multiple Change-Point and Factor Analysis for High-Dimensional Time Series. JOURNAL OF ECONOMETRICS, 206, 187-225 [https://doi.org/10.1016/j.jeconom.2018.05.003].

Simultaneous Multiple Change-Point and Factor Analysis for High-Dimensional Time Series

Barigozzi M;
2018

Abstract

We propose the first comprehensive treatment of high-dimensional time series factor models with multiple change-points in their second-order structure. We operate under the most flexible definition of piecewise stationarity, and estimate the number and locations of change-points consistently as well as identifying whether they originate in the common or idiosyncratic components. Through the use of wavelets, we transform the problem of change-point detection in the second-order structure of a high-dimensional time series, into the (relatively easier) problem of change-point detection in the means of high-dimensional panel data. Also, our methodology circumvents the difficult issue of the accurate estimation of the true number of factors in the presence of multiple change-points by adopting a screening procedure. We further show that consistent factor analysis is achieved over each segment defined by the change-points estimated by the proposed methodology. In extensive simulation studies, we observe that factor analysis prior to change-point detection improves the detectability of change-points, and identify and describe an interesting ‘spillover’ effect in which substantial breaks in the idiosyncratic components get, naturally enough, identified as change-points in the common components, which prompts us to regard the corresponding change-points as also acting as a form of ‘factors’. Our methodology is implemented in the R package factorcpt, available from CRAN.
2018
Barigozzi M, Cho H, Fryzlewicz P (2018). Simultaneous Multiple Change-Point and Factor Analysis for High-Dimensional Time Series. JOURNAL OF ECONOMETRICS, 206, 187-225 [https://doi.org/10.1016/j.jeconom.2018.05.003].
Barigozzi M; Cho H; Fryzlewicz P
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/722863
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 66
  • ???jsp.display-item.citation.isi??? 63
social impact