Bioimage classification is increasingly becoming more important in many biological studies including those that require accurate cell phenotype recognition, subcellular localization, and histopathological classification. In this paper, we present a new General Purpose (GenP) bioimage classification method that can be applied to a large range of classification problems. The GenP system we propose is an ensemble that combines multiple texture features (both handcrafted and learned descriptors) for superior and generalizable discriminative power. Our ensemble obtains a boosting of performance by combining local features, dense sampling features, and deep learning features. Each descriptor is used to train a different Support Vector Machine that is then combined by sum rule. We evaluate our method on a diverse set of bioimage classification tasks each represented by a benchmark database, including some of those available in the IICBU 2008 database. Each bioimage classification task represents a typical subcellular, cellular, and tissue level classification problem. Our evaluation on these datasets demonstrates that the proposed GenP bioimage ensemble obtains state-of-the-art performance without any ad-hoc dataset tuning of the parameters (thereby avoiding any risk of overfitting/overtraining). To reproduce the experiments reported in this paper, the MATLAB code of all the descriptors is available at https://github.com/LorisNanni and https://www.dropbox.com/s/bguw035yrqz0pwp/ElencoCode.docx?dl=0.

Nanni L., Brahnam S., Ghidoni S., Lumini A. (2019). Bioimage Classification with Handcrafted and Learned Features. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 16(3), 874-885 [10.1109/TCBB.2018.2821127].

Bioimage Classification with Handcrafted and Learned Features

Lumini A.
2019

Abstract

Bioimage classification is increasingly becoming more important in many biological studies including those that require accurate cell phenotype recognition, subcellular localization, and histopathological classification. In this paper, we present a new General Purpose (GenP) bioimage classification method that can be applied to a large range of classification problems. The GenP system we propose is an ensemble that combines multiple texture features (both handcrafted and learned descriptors) for superior and generalizable discriminative power. Our ensemble obtains a boosting of performance by combining local features, dense sampling features, and deep learning features. Each descriptor is used to train a different Support Vector Machine that is then combined by sum rule. We evaluate our method on a diverse set of bioimage classification tasks each represented by a benchmark database, including some of those available in the IICBU 2008 database. Each bioimage classification task represents a typical subcellular, cellular, and tissue level classification problem. Our evaluation on these datasets demonstrates that the proposed GenP bioimage ensemble obtains state-of-the-art performance without any ad-hoc dataset tuning of the parameters (thereby avoiding any risk of overfitting/overtraining). To reproduce the experiments reported in this paper, the MATLAB code of all the descriptors is available at https://github.com/LorisNanni and https://www.dropbox.com/s/bguw035yrqz0pwp/ElencoCode.docx?dl=0.
2019
Nanni L., Brahnam S., Ghidoni S., Lumini A. (2019). Bioimage Classification with Handcrafted and Learned Features. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 16(3), 874-885 [10.1109/TCBB.2018.2821127].
Nanni L.; Brahnam S.; Ghidoni S.; Lumini A.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/722434
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 24
social impact