Vitamin B1 is an essential exogenous micronutrient for animals. Mass death and reproductive failure in top aquatic consumers caused by vitamin B1 deficiency is an emerging conservation issue in Northern hemisphere aquatic ecosystems. We present for the first time a model that identifies conditions responsible for the constrained flow of vitamin B1 from unicellular organisms to planktivorous fishes. The flow of vitamin B1 through the food web is constrained under anthropogenic pressures of increased nutrient input and, driven by climatic change, increased light attenuation by dissolved substances transported to marine coastal systems. Fishing pressure on piscivorous fish, through increased abundance of planktivorous fish that overexploit mesozooplankton, may further constrain vitamin B1 flow from producers to consumers. We also found that key ecological contributors to the constrained flow of vitamin B1 are a low mesozooplankton biomass, picoalgae prevailing among primary producers and low fluctuations of population numbers of planktonic organisms.
Ejsmond M.J., Blackburn N., Fridolfsson E., Haecky P., Andersson A., Casini M., et al. (2019). Modeling vitamin B1 transfer to consumers in the aquatic food web. SCIENTIFIC REPORTS, 9(1), 1-11 [10.1038/s41598-019-46422-2].
Modeling vitamin B1 transfer to consumers in the aquatic food web
Casini M.;
2019
Abstract
Vitamin B1 is an essential exogenous micronutrient for animals. Mass death and reproductive failure in top aquatic consumers caused by vitamin B1 deficiency is an emerging conservation issue in Northern hemisphere aquatic ecosystems. We present for the first time a model that identifies conditions responsible for the constrained flow of vitamin B1 from unicellular organisms to planktivorous fishes. The flow of vitamin B1 through the food web is constrained under anthropogenic pressures of increased nutrient input and, driven by climatic change, increased light attenuation by dissolved substances transported to marine coastal systems. Fishing pressure on piscivorous fish, through increased abundance of planktivorous fish that overexploit mesozooplankton, may further constrain vitamin B1 flow from producers to consumers. We also found that key ecological contributors to the constrained flow of vitamin B1 are a low mesozooplankton biomass, picoalgae prevailing among primary producers and low fluctuations of population numbers of planktonic organisms.File | Dimensione | Formato | |
---|---|---|---|
Modeling vitamin B1 transfer to consumers in the aquatic food web.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
3.73 MB
Formato
Adobe PDF
|
3.73 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.