Continuous hydrothermal flow synthesis (CHFS) of Ni-Fe layered double hydroxide (LDH) leads to waterborne dispersions of 2D nanoplatelets in the range of 10-50 nm in lateral size. Conversion of the as-synthesized LDH nanoplatelet dispersion into inkjet printing inks results in high precision patterning and complete substrate coverage with low LDH loadings in the range of μg cm-2. The Ni-Fe LDHs' anisotropy induces a preferential in-plane alignment to a glassy carbon substrate producing low-porosity films. Thin Ni-Fe LDH films in the submicrometer range exhibit superior electrocatalytic activity for the oxygen evolution reaction (OER), with an overpotential of 270 mV at 10 mA cm-2 and a Tafel slope of 32 mV dec-1. The particle alignment creates a compact film and induces a loading-independent electrochemical performance of the Ni-Fe LDH electrodes for loadings above 50 μg cm-2. The combination of CHFS and inkjet printing represents a promising hyphenation of large-scale synthesis and electrode production.

Rosa, M., Costa Bassetto, V., Girault, H.H., Lesch, A., Esposito, V. (2020). Assembling Ni-Fe Layered Double Hydroxide 2D Thin Films for Oxygen Evolution Electrodes. ACS APPLIED ENERGY MATERIALS, 3(1), 1017-1026 [10.1021/acsaem.9b02055].

Assembling Ni-Fe Layered Double Hydroxide 2D Thin Films for Oxygen Evolution Electrodes

Lesch A.
;
2020

Abstract

Continuous hydrothermal flow synthesis (CHFS) of Ni-Fe layered double hydroxide (LDH) leads to waterborne dispersions of 2D nanoplatelets in the range of 10-50 nm in lateral size. Conversion of the as-synthesized LDH nanoplatelet dispersion into inkjet printing inks results in high precision patterning and complete substrate coverage with low LDH loadings in the range of μg cm-2. The Ni-Fe LDHs' anisotropy induces a preferential in-plane alignment to a glassy carbon substrate producing low-porosity films. Thin Ni-Fe LDH films in the submicrometer range exhibit superior electrocatalytic activity for the oxygen evolution reaction (OER), with an overpotential of 270 mV at 10 mA cm-2 and a Tafel slope of 32 mV dec-1. The particle alignment creates a compact film and induces a loading-independent electrochemical performance of the Ni-Fe LDH electrodes for loadings above 50 μg cm-2. The combination of CHFS and inkjet printing represents a promising hyphenation of large-scale synthesis and electrode production.
2020
Rosa, M., Costa Bassetto, V., Girault, H.H., Lesch, A., Esposito, V. (2020). Assembling Ni-Fe Layered Double Hydroxide 2D Thin Films for Oxygen Evolution Electrodes. ACS APPLIED ENERGY MATERIALS, 3(1), 1017-1026 [10.1021/acsaem.9b02055].
Rosa, M.; Costa Bassetto, V.; Girault, H. H.; Lesch, A.; Esposito, V.
File in questo prodotto:
File Dimensione Formato  
Rosa et al. - 2019 - Assembling Ni-Fe Layered Double Hydroxide 2D Thin Films for Oxygen Evolution Electrodes(2).pdf

accesso aperto

Descrizione: Supporting Information
Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Altra tipologia di licenza compatibile con Open Access
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF Visualizza/Apri
assembling_Lesch_AM.pdf

Open Access dal 04/12/2020

Tipo: Postprint / Author's Accepted Manuscript (AAM) - versione accettata per la pubblicazione dopo la peer-review
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 2.3 MB
Formato Adobe PDF
2.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/721137
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 24
social impact