We consider the Cauchy-problem for the following parabolic equation: eginequation* displaystyle u_t = Delta u+ f(u,|x|), endequation* where $x in RR^n$, $n >2$, and $f=f(u,|x|)$ is either critical or supercritical with respect to the Joseph-Lundgren exponent. In particular, we improve and generalize some known results concerning stability and weak asymptotic stability of positive Ground States.
Bisconti, L., Franca, M. (2018). Stability of ground states for a nonlinear parabolic equation. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 1-26.
Stability of ground states for a nonlinear parabolic equation
Franca, MatteoMembro del Collaboration Group
2018
Abstract
We consider the Cauchy-problem for the following parabolic equation: eginequation* displaystyle u_t = Delta u+ f(u,|x|), endequation* where $x in RR^n$, $n >2$, and $f=f(u,|x|)$ is either critical or supercritical with respect to the Joseph-Lundgren exponent. In particular, we improve and generalize some known results concerning stability and weak asymptotic stability of positive Ground States.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
bisconti.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
437.34 kB
Formato
Adobe PDF
|
437.34 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.