We consider the Cauchy-problem for the following parabolic equation: eginequation* displaystyle u_t = Delta u+ f(u,|x|), endequation* where $x in RR^n$, $n >2$, and $f=f(u,|x|)$ is either critical or supercritical with respect to the Joseph-Lundgren exponent. In particular, we improve and generalize some known results concerning stability and weak asymptotic stability of positive Ground States.

Bisconti, L., Franca, M. (2018). Stability of ground states for a nonlinear parabolic equation. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 1-26.

Stability of ground states for a nonlinear parabolic equation

Franca, Matteo
Membro del Collaboration Group
2018

Abstract

We consider the Cauchy-problem for the following parabolic equation: eginequation* displaystyle u_t = Delta u+ f(u,|x|), endequation* where $x in RR^n$, $n >2$, and $f=f(u,|x|)$ is either critical or supercritical with respect to the Joseph-Lundgren exponent. In particular, we improve and generalize some known results concerning stability and weak asymptotic stability of positive Ground States.
2018
Bisconti, L., Franca, M. (2018). Stability of ground states for a nonlinear parabolic equation. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 1-26.
Bisconti, Luca; Franca, Matteo
File in questo prodotto:
File Dimensione Formato  
bisconti.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 437.34 kB
Formato Adobe PDF
437.34 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/721086
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact