We consider the Cauchy-problem for the parabolic equation $$ u_t = Delta u+ f(u,|x|), $$ where $x in mathbb R^n$, $n >2$, and $f(u,|x|)$ is either critical or supercritical with respect to the Joseph-Lundgren exponent. In particular, we improve and generalize some known results concerning stability and weak asymptotic stability of positive ground states.

Franca M., Johnson R. (2019). On the non-autonomous hopf bifurcation problem: Systems with rapidly varying coefficients. ELECTRONIC JOURNAL ON THE QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2019(56), 1-24 [10.14232/ejqtde.2019.1.56].

On the non-autonomous hopf bifurcation problem: Systems with rapidly varying coefficients

Franca M.
Membro del Collaboration Group
;
2019

Abstract

We consider the Cauchy-problem for the parabolic equation $$ u_t = Delta u+ f(u,|x|), $$ where $x in mathbb R^n$, $n >2$, and $f(u,|x|)$ is either critical or supercritical with respect to the Joseph-Lundgren exponent. In particular, we improve and generalize some known results concerning stability and weak asymptotic stability of positive ground states.
2019
Franca M., Johnson R. (2019). On the non-autonomous hopf bifurcation problem: Systems with rapidly varying coefficients. ELECTRONIC JOURNAL ON THE QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2019(56), 1-24 [10.14232/ejqtde.2019.1.56].
Franca M.; Johnson R.
File in questo prodotto:
File Dimensione Formato  
hopf2.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 581.11 kB
Formato Adobe PDF
581.11 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/721074
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact