Forming a pulsed beam of cold antihydrogen using charge-exchange with Rydberg positronium (Ps) is the goal of the AEgIS collaboration, which aims to a first gravity measurement on neutral antimatter. Recently achieved results in Ps formation and laser spectroscopy in the main AEgIS apparatus are summarized. First, Ps has been produced using nanochanneled silicon targets in a cryogenic environment (~ 15 K) with 1 T magnetic field and observed by means of Single-Shot Positron Annihilation Lifetime Spectroscopy. The first demonstration of Ps n=3 excitation has been obtained as well using the same technique, validating the proof-of-concept of AEgIS. Subsequently, a new fast and high sensitivity detection method for laser-excited Ps in high magnetic field has been developed, using the combination of laser/field ionization and an high sensitivity MCP detector coupled to a low-noise CMOS camera. This technique will form the basis of future experiments involving Rydberg Ps spectroscopy in AEgIS.
Caravita R., Mariazzi S., Aghion S., Amsler C., Antonello M., Belov A., et al. (2019). Positronium Rydberg excitation diagnostic in a 1T cryogenic environment. American Institute of Physics Inc. [10.1063/1.5135825].
Positronium Rydberg excitation diagnostic in a 1T cryogenic environment
Prevedelli M.;
2019
Abstract
Forming a pulsed beam of cold antihydrogen using charge-exchange with Rydberg positronium (Ps) is the goal of the AEgIS collaboration, which aims to a first gravity measurement on neutral antimatter. Recently achieved results in Ps formation and laser spectroscopy in the main AEgIS apparatus are summarized. First, Ps has been produced using nanochanneled silicon targets in a cryogenic environment (~ 15 K) with 1 T magnetic field and observed by means of Single-Shot Positron Annihilation Lifetime Spectroscopy. The first demonstration of Ps n=3 excitation has been obtained as well using the same technique, validating the proof-of-concept of AEgIS. Subsequently, a new fast and high sensitivity detection method for laser-excited Ps in high magnetic field has been developed, using the combination of laser/field ionization and an high sensitivity MCP detector coupled to a low-noise CMOS camera. This technique will form the basis of future experiments involving Rydberg Ps spectroscopy in AEgIS.File | Dimensione | Formato | |
---|---|---|---|
1.5135825.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per accesso libero gratuito
Dimensione
1.94 MB
Formato
Adobe PDF
|
1.94 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.