Objective: To assess the differences in the pharmacokinetic profiles of S-ketamine, R-ketamine and their metabolites, S-norketamine and R-norketamine, and to measure relevant physiologic variables after intravenous administration of racemic (RS) ketamine or S-ketamine alone in Beagle dogs sedated with medetomidine. Study design: Experimental, blinded and randomized crossover study. Animals: A total of six (three female and three male) adult Beagle dogs. Methods: Medetomidine (450 μg m–2) was administered intramuscularly, followed by either S-ketamine (2 mg kg–1) or RS-ketamine (4 mg kg–1) 20 minutes later, both administered intravenously. Blood samples were collected before medetomidine administration and at multiple time points 1–900 minutes following the ketamine administration. Plasma samples were analysed using liquid chromatography–tandem mass spectrometry. Heart rate, respiratory rate, noninvasive blood pressure, haemoglobin saturation with oxygen and body temperature were measured at baseline, before ketamine administration, and 1, 2, 5, 10, 15, 20 and 30 minutes after ketamine administration. All cardiovascular variables, blood glucose, haemoglobin and lactate concentrations were analysed using different linear mixed effects models; the significance was set at p < 0.05. Results: S-ketamine showed a two-compartment kinetic profile; no statistically significant differences were observed between its concentrations or in the calculated pharmacokinetic parameters following S- or RS-ketamine. When the racemic mixture was administered, no differences were detected between R- and S-ketamine concentrations, but the area under the curve (AUC) for R-norketamine was significantly lower than that for S-norketamine. Clinically relevant physiologic variables did not show statistically significant differences following the administration of the racemic mixture or of S-ketamine alone. Conclusions and clinical relevance: This study performed in dogs showed that RS-ketamine and S-ketamine combined with medetomidine showed enantioselective pharmacokinetics as S- and R-norketamine AUCs were different, but S-ketamine levels were identical.
Romagnoli N., Bektas R.N., Kutter A.P.N., Barbarossa A., Roncada P., Hartnack S., et al. (2020). Pharmacokinetics of S-ketamine and R-ketamine and their active metabolites after racemic ketamine or S-ketamine intravenous administration in dogs sedated with medetomidine. VETERINARY ANAESTHESIA AND ANALGESIA, 47(2), 168-176 [10.1016/j.vaa.2019.08.048].
Pharmacokinetics of S-ketamine and R-ketamine and their active metabolites after racemic ketamine or S-ketamine intravenous administration in dogs sedated with medetomidine
Romagnoli N.Primo
;Barbarossa A.
;Roncada P.;
2020
Abstract
Objective: To assess the differences in the pharmacokinetic profiles of S-ketamine, R-ketamine and their metabolites, S-norketamine and R-norketamine, and to measure relevant physiologic variables after intravenous administration of racemic (RS) ketamine or S-ketamine alone in Beagle dogs sedated with medetomidine. Study design: Experimental, blinded and randomized crossover study. Animals: A total of six (three female and three male) adult Beagle dogs. Methods: Medetomidine (450 μg m–2) was administered intramuscularly, followed by either S-ketamine (2 mg kg–1) or RS-ketamine (4 mg kg–1) 20 minutes later, both administered intravenously. Blood samples were collected before medetomidine administration and at multiple time points 1–900 minutes following the ketamine administration. Plasma samples were analysed using liquid chromatography–tandem mass spectrometry. Heart rate, respiratory rate, noninvasive blood pressure, haemoglobin saturation with oxygen and body temperature were measured at baseline, before ketamine administration, and 1, 2, 5, 10, 15, 20 and 30 minutes after ketamine administration. All cardiovascular variables, blood glucose, haemoglobin and lactate concentrations were analysed using different linear mixed effects models; the significance was set at p < 0.05. Results: S-ketamine showed a two-compartment kinetic profile; no statistically significant differences were observed between its concentrations or in the calculated pharmacokinetic parameters following S- or RS-ketamine. When the racemic mixture was administered, no differences were detected between R- and S-ketamine concentrations, but the area under the curve (AUC) for R-norketamine was significantly lower than that for S-norketamine. Clinically relevant physiologic variables did not show statistically significant differences following the administration of the racemic mixture or of S-ketamine alone. Conclusions and clinical relevance: This study performed in dogs showed that RS-ketamine and S-ketamine combined with medetomidine showed enantioselective pharmacokinetics as S- and R-norketamine AUCs were different, but S-ketamine levels were identical.File | Dimensione | Formato | |
---|---|---|---|
Pre-print.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
695.84 kB
Formato
Adobe PDF
|
695.84 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.