A multi-stage numerical technique for the assessment of Dielectric Barrier Discharge (DBD) in atmospheric pressure air is presented. The model is conceived to work on the characteristic times of heavy species. The dynamics of the heavy species are computed with a 2D drift-drift diffusion model, based on a Finite Volume approach. A non-linear Poisson solver is employed for the calculation of the electric field produced by the heavy species and electrons distributions. This latter is assumed to instantly follow the Boltzmann distribution, allowing limiting the transport model to the heavy species. The main chemical reactions taking place during the discharge process between the air chemical constituents are included in the model, whereas the effects of the impact ionization are accounted by means of a simplified 1D streamer model.
Cristofolini A., Popoli A. (2019). A multi-stage approach for DBD modelling. DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND : Institute of Physics Publishing [10.1088/1742-6596/1243/1/012012].
A multi-stage approach for DBD modelling
Cristofolini A.
Methodology
;Popoli A.Methodology
2019
Abstract
A multi-stage numerical technique for the assessment of Dielectric Barrier Discharge (DBD) in atmospheric pressure air is presented. The model is conceived to work on the characteristic times of heavy species. The dynamics of the heavy species are computed with a 2D drift-drift diffusion model, based on a Finite Volume approach. A non-linear Poisson solver is employed for the calculation of the electric field produced by the heavy species and electrons distributions. This latter is assumed to instantly follow the Boltzmann distribution, allowing limiting the transport model to the heavy species. The main chemical reactions taking place during the discharge process between the air chemical constituents are included in the model, whereas the effects of the impact ionization are accounted by means of a simplified 1D streamer model.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.