A multi-stage numerical technique for the assessment of Dielectric Barrier Discharge (DBD) in atmospheric pressure air is presented. The model is conceived to work on the characteristic times of heavy species. The dynamics of the heavy species are computed with a 2D drift-drift diffusion model, based on a Finite Volume approach. A non-linear Poisson solver is employed for the calculation of the electric field produced by the heavy species and electrons distributions. This latter is assumed to instantly follow the Boltzmann distribution, allowing limiting the transport model to the heavy species. The main chemical reactions taking place during the discharge process between the air chemical constituents are included in the model, whereas the effects of the impact ionization are accounted by means of a simplified 1D streamer model.

Cristofolini, A., Popoli, A. (2019). A multi-stage approach for DBD modelling. DIRAC HOUSE, TEMPLE BACK, BRISTOL : Institute of Physics Publishing [10.1088/1742-6596/1243/1/012012].

A multi-stage approach for DBD modelling

Cristofolini A.
Methodology
;
Popoli A.
Methodology
2019

Abstract

A multi-stage numerical technique for the assessment of Dielectric Barrier Discharge (DBD) in atmospheric pressure air is presented. The model is conceived to work on the characteristic times of heavy species. The dynamics of the heavy species are computed with a 2D drift-drift diffusion model, based on a Finite Volume approach. A non-linear Poisson solver is employed for the calculation of the electric field produced by the heavy species and electrons distributions. This latter is assumed to instantly follow the Boltzmann distribution, allowing limiting the transport model to the heavy species. The main chemical reactions taking place during the discharge process between the air chemical constituents are included in the model, whereas the effects of the impact ionization are accounted by means of a simplified 1D streamer model.
2019
Journal of Physics: Conference Series
1
10
Cristofolini, A., Popoli, A. (2019). A multi-stage approach for DBD modelling. DIRAC HOUSE, TEMPLE BACK, BRISTOL : Institute of Physics Publishing [10.1088/1742-6596/1243/1/012012].
Cristofolini, A.; Popoli, A.
File in questo prodotto:
File Dimensione Formato  
Cristofolini_2019_J._Phys.__Conf._Ser._1243_012012.pdf

accesso aperto

Descrizione: VoR
Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 6.5 MB
Formato Adobe PDF
6.5 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/718723
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact