In this work we introduce a multi-species generalization of the Hopfield model for associative memory, where neurons are divided into groups and both inter-groups and intra-groups pair-wise interactions are considered, with different intensities. Thus, this system contains two of the main ingredients of modern deep neural-network architectures: Hebbian interactions to store patterns of information and multiple layers coding different levels of correlations. The model is completely solvable in the low-load regime with a suitable generalization of the Hamilton–Jacobi technique, despite the Hamiltonian can be a non-definite quadratic form of the Mattis magnetizations. The family of multi-species Hopfield model includes, as special cases, the 3-layers Restricted Boltzmann Machine with Gaussian hidden layer and the Bidirectional Associative Memory model.

Agliari, E., Migliozzi, D., Tantari, D. (2018). Non-convex Multi-species Hopfield Models. JOURNAL OF STATISTICAL PHYSICS, 172(5), 1247-1269 [10.1007/s10955-018-2098-6].

Non-convex Multi-species Hopfield Models

Tantari, Daniele
2018

Abstract

In this work we introduce a multi-species generalization of the Hopfield model for associative memory, where neurons are divided into groups and both inter-groups and intra-groups pair-wise interactions are considered, with different intensities. Thus, this system contains two of the main ingredients of modern deep neural-network architectures: Hebbian interactions to store patterns of information and multiple layers coding different levels of correlations. The model is completely solvable in the low-load regime with a suitable generalization of the Hamilton–Jacobi technique, despite the Hamiltonian can be a non-definite quadratic form of the Mattis magnetizations. The family of multi-species Hopfield model includes, as special cases, the 3-layers Restricted Boltzmann Machine with Gaussian hidden layer and the Bidirectional Associative Memory model.
2018
Agliari, E., Migliozzi, D., Tantari, D. (2018). Non-convex Multi-species Hopfield Models. JOURNAL OF STATISTICAL PHYSICS, 172(5), 1247-1269 [10.1007/s10955-018-2098-6].
Agliari, Elena; Migliozzi, Danila; Tantari, Daniele
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/718067
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
social impact