We give a geometry of interaction model for a typed λ -calculus endowed with operators for sampling from a continuous uniform distribution and soft conditioning, namely a paradigmatic calculus for higher-order Bayesian programming. The model is based on the category of measurable spaces and partial measurable functions, and is proved adequate with respect to both a distribution-based and a sampling-based operational semantics.

Dal Lago U., Hoshino N. (2019). The Geometry of Bayesian Programming. IEEE [10.1109/LICS.2019.8785663].

The Geometry of Bayesian Programming

Dal Lago U.
;
2019

Abstract

We give a geometry of interaction model for a typed λ -calculus endowed with operators for sampling from a continuous uniform distribution and soft conditioning, namely a paradigmatic calculus for higher-order Bayesian programming. The model is based on the category of measurable spaces and partial measurable functions, and is proved adequate with respect to both a distribution-based and a sampling-based operational semantics.
2019
Proceedings of the 34th Symposium on Logic in Computer Science (LICS)
1
13
Dal Lago U., Hoshino N. (2019). The Geometry of Bayesian Programming. IEEE [10.1109/LICS.2019.8785663].
Dal Lago U.; Hoshino N.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/717652
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact