Lithium-rich transition-metal-oxide cathodes are among the most promising materials for next generation lithium-ion-batteries because they operate at high voltages and deliver high capacities. However, their cycle-life remains limited, and individual roles of the transition-metals are still not fully understood. Using bulk-sensitive X-ray absorption and emission spectroscopy on Li[Li0.2Ni0.16Mn0.56Co0.08]O2, we inspect the behavior of Mn, generally considered inert upon the electrochemical process. During the first charge Mn appears to be redox-active showing a partial transformation from high-spin Mn4+ to Mn3+ in both high and low spin configurations, where the latter is expected to favor reversible cycling. The Mn redox-state with cycling continues changing in opposition to the expected charge compensation and is correlated with Ni oxidation/reduction, also spatially. The findings suggest that strain induced on the Mn-O sublattice by Ni oxidation triggers Mn reduction. These results unravel the Mn role in controlling the electrochemistry of Li-rich cathodes.
Simonelli L., Sorrentino A., Marini C., Ramanan N., Heinis D., Olszewski W., et al. (2019). Role of Manganese in Lithium- and Manganese-Rich Layered Oxides Cathodes. THE JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 10(12), 3359-3368 [10.1021/acs.jpclett.9b01174].
Role of Manganese in Lithium- and Manganese-Rich Layered Oxides Cathodes
Mullaliu A.;Giorgetti M.;
2019
Abstract
Lithium-rich transition-metal-oxide cathodes are among the most promising materials for next generation lithium-ion-batteries because they operate at high voltages and deliver high capacities. However, their cycle-life remains limited, and individual roles of the transition-metals are still not fully understood. Using bulk-sensitive X-ray absorption and emission spectroscopy on Li[Li0.2Ni0.16Mn0.56Co0.08]O2, we inspect the behavior of Mn, generally considered inert upon the electrochemical process. During the first charge Mn appears to be redox-active showing a partial transformation from high-spin Mn4+ to Mn3+ in both high and low spin configurations, where the latter is expected to favor reversible cycling. The Mn redox-state with cycling continues changing in opposition to the expected charge compensation and is correlated with Ni oxidation/reduction, also spatially. The findings suggest that strain induced on the Mn-O sublattice by Ni oxidation triggers Mn reduction. These results unravel the Mn role in controlling the electrochemistry of Li-rich cathodes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.