The present work explores the possibilities of 3D printing applied to structural engineering field to create innovative design and optimized shapes. By means of Wire-and-Arc Additive Manufacturing, structural members are manufactured by placing layer upon layer of welded steel material in an automated process. Additive Manufacturing, thanks to the theoretical freedom in the geometrical shapes that can be obtained, open completely new possibilities for designers. On the other hand, specific aspects related to material properties and geometrical irregularities characteristics of such innovative manufacturing processes have to be properly considered in the design phase. Along with digital design tools recently developed and applied in architecture and construction for the realization of new shapes and forms through parametric design, the work presents a new structural shape for diagrid columns to obtain structurally optimized forms adapted to be efficiently realized by means of Wire-and-Arc Additive Manufacturing process taking into account the specific features of the printing process. The outcome of the study is the final realization of the column in a 1:2 scaled dimension. These first engineering evaluations are intended to pave the way towards the design of a new family of optimized structural elements to be efficiently 3D-printed, towards the fully-automated design and construction of novel 3D-printed building structures.

Laghi V., Palermo M., Gasparini G., Trombetti T. (2019). Optimization studies on diagrid columns realized with wire-and-arc additive manufacturing process. International Association for Bridge and Structural Engineering (IABSE).

Optimization studies on diagrid columns realized with wire-and-arc additive manufacturing process

Laghi V.;Palermo M.;Gasparini G.;Trombetti T.
2019

Abstract

The present work explores the possibilities of 3D printing applied to structural engineering field to create innovative design and optimized shapes. By means of Wire-and-Arc Additive Manufacturing, structural members are manufactured by placing layer upon layer of welded steel material in an automated process. Additive Manufacturing, thanks to the theoretical freedom in the geometrical shapes that can be obtained, open completely new possibilities for designers. On the other hand, specific aspects related to material properties and geometrical irregularities characteristics of such innovative manufacturing processes have to be properly considered in the design phase. Along with digital design tools recently developed and applied in architecture and construction for the realization of new shapes and forms through parametric design, the work presents a new structural shape for diagrid columns to obtain structurally optimized forms adapted to be efficiently realized by means of Wire-and-Arc Additive Manufacturing process taking into account the specific features of the printing process. The outcome of the study is the final realization of the column in a 1:2 scaled dimension. These first engineering evaluations are intended to pave the way towards the design of a new family of optimized structural elements to be efficiently 3D-printed, towards the fully-automated design and construction of novel 3D-printed building structures.
2019
20th Congress of IABSE, New York City 2019: The Evolving Metropolis - Report
177
181
Laghi V., Palermo M., Gasparini G., Trombetti T. (2019). Optimization studies on diagrid columns realized with wire-and-arc additive manufacturing process. International Association for Bridge and Structural Engineering (IABSE).
Laghi V.; Palermo M.; Gasparini G.; Trombetti T.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/715601
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact