We derive bounds for the objective errors and gradient residuals when finding approximations to the solution of common regularized quadratic optimization problems within evolving Krylov spaces. These provide upper bounds on the number of iterations required to achieve a given stated accuracy. We illustrate the quality of our bounds on given test examples.

Gould N.I.M., Simoncini V. (2020). Error estimates for iterative algorithms for minimizing regularized quadratic subproblems. OPTIMIZATION METHODS & SOFTWARE, 35(2), 304-328 [10.1080/10556788.2019.1670177].

Error estimates for iterative algorithms for minimizing regularized quadratic subproblems

Simoncini V.
2020

Abstract

We derive bounds for the objective errors and gradient residuals when finding approximations to the solution of common regularized quadratic optimization problems within evolving Krylov spaces. These provide upper bounds on the number of iterations required to achieve a given stated accuracy. We illustrate the quality of our bounds on given test examples.
2020
Gould N.I.M., Simoncini V. (2020). Error estimates for iterative algorithms for minimizing regularized quadratic subproblems. OPTIMIZATION METHODS & SOFTWARE, 35(2), 304-328 [10.1080/10556788.2019.1670177].
Gould N.I.M.; Simoncini V.
File in questo prodotto:
File Dimensione Formato  
AAM_Error estimates for iterative algorithms for minimizing regularized quadratic subproblems.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale (CCBYNC)
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/714899
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 11
social impact