Let G be a simply connected semisimple algebraic group with Lie algebra g, let G(0) subset of G be the symmetric subgroup defined by an algebraic involution sigma and let g(1) subset of g be the isotropy representation of G(0). Given an abelian subalgebra a of g contained in g(1) and stable under the action of some Borel subgroup B-0 subset of G(0), we classify the B-0-orbits in a and characterize the sphericity of G(0)a. Our main tool is the combinatorics of sigma-minuscule elements in the affine Weyl group of g and that of strongly orthogonal roots in Hermitian symmetric spaces.

Gandini, J., Möseneder Frajria, P., Papi, P. (2017). Spherical nilpotent orbits and abelian subalgebras in isotropy representations. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 95(1), 323-352 [10.1112/jlms.12022].

Spherical nilpotent orbits and abelian subalgebras in isotropy representations

J. Gandini;P. Papi
2017

Abstract

Let G be a simply connected semisimple algebraic group with Lie algebra g, let G(0) subset of G be the symmetric subgroup defined by an algebraic involution sigma and let g(1) subset of g be the isotropy representation of G(0). Given an abelian subalgebra a of g contained in g(1) and stable under the action of some Borel subgroup B-0 subset of G(0), we classify the B-0-orbits in a and characterize the sphericity of G(0)a. Our main tool is the combinatorics of sigma-minuscule elements in the affine Weyl group of g and that of strongly orthogonal roots in Hermitian symmetric spaces.
2017
Gandini, J., Möseneder Frajria, P., Papi, P. (2017). Spherical nilpotent orbits and abelian subalgebras in isotropy representations. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 95(1), 323-352 [10.1112/jlms.12022].
Gandini, J.; Möseneder Frajria, P.; Papi, P.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/714333
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact