Let G be a simply connected semisimple algebraic group with Lie algebra g, let G(0) subset of G be the symmetric subgroup defined by an algebraic involution sigma and let g(1) subset of g be the isotropy representation of G(0). Given an abelian subalgebra a of g contained in g(1) and stable under the action of some Borel subgroup B-0 subset of G(0), we classify the B-0-orbits in a and characterize the sphericity of G(0)a. Our main tool is the combinatorics of sigma-minuscule elements in the affine Weyl group of g and that of strongly orthogonal roots in Hermitian symmetric spaces.

Spherical nilpotent orbits and abelian subalgebras in isotropy representations

J. Gandini;P. Papi
2017

Abstract

Let G be a simply connected semisimple algebraic group with Lie algebra g, let G(0) subset of G be the symmetric subgroup defined by an algebraic involution sigma and let g(1) subset of g be the isotropy representation of G(0). Given an abelian subalgebra a of g contained in g(1) and stable under the action of some Borel subgroup B-0 subset of G(0), we classify the B-0-orbits in a and characterize the sphericity of G(0)a. Our main tool is the combinatorics of sigma-minuscule elements in the affine Weyl group of g and that of strongly orthogonal roots in Hermitian symmetric spaces.
J. Gandini, P. Möseneder Frajria, P. Papi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/714333
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact