Let G be a connected reductive complex algebraic group and B a Borel subgroup of G. We consider a subgroup (Formula presented.) which acts with finitely many orbits on the flag variety G / B, and we classify the H-orbits in G / B in terms of suitable root systems. As well, we study the Weyl group action defined by Knop on the set of H-orbits in G / B, and we give a combinatorial model for this action in terms of weight polytopes.

J. Gandini, G.P. (2018). Orbits of strongly solvable spherical subgroups on the flag variety. JOURNAL OF ALGEBRAIC COMBINATORICS, 47(3), 357-401 [10.1007/s10801-017-0779-x].

Orbits of strongly solvable spherical subgroups on the flag variety

J. Gandini;
2018

Abstract

Let G be a connected reductive complex algebraic group and B a Borel subgroup of G. We consider a subgroup (Formula presented.) which acts with finitely many orbits on the flag variety G / B, and we classify the H-orbits in G / B in terms of suitable root systems. As well, we study the Weyl group action defined by Knop on the set of H-orbits in G / B, and we give a combinatorial model for this action in terms of weight polytopes.
2018
J. Gandini, G.P. (2018). Orbits of strongly solvable spherical subgroups on the flag variety. JOURNAL OF ALGEBRAIC COMBINATORICS, 47(3), 357-401 [10.1007/s10801-017-0779-x].
J. Gandini, G. Pezzini
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/714330
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
social impact