An abnormal structural form of glycogen (with less branching points or amylopectin-like polysaccharide) called polyglucosan (PG) may accumulate in various tissues such as striated and smooth muscles, brain, nerve, liver and skin, and cause a group of nine different genetic disorders manifesting with a variety of clinical phenotypes that affect mainly the nervous system (Lafora disease, adult PG body disease), the heart (glycogen storage disease type XV, hypertrophic cardiomyopathy type 6, PG body myopathy type 1) and the skeletal muscle (glycogen storage disease type IV, glycogen storage disease type VII, PG body myopathy type 2), depending on the organs which are mostly affected by the PG aggregates. The pathological feature of PG storage in tissues is a hallmark of these disorders. Whole-genome sequencing has allowed to obtain a diagnosis in a large number of patients with a previously unrecognized disorder. We describe the clinical, pathological and molecular features of these genetic disorders, for many of which the pathological mechanisms underlying the corresponding mutant gene have been investigated and, at least in part, understood.
Cenacchi G., Papa V., Costa R., Pegoraro V., Marozzo R., Fanin M., et al. (2019). Update on polyglucosan storage diseases. VIRCHOWS ARCHIV, 475(6), 671-686 [10.1007/s00428-019-02633-6].
Update on polyglucosan storage diseases
Cenacchi G.
;Papa V.Membro del Collaboration Group
;Costa R.Membro del Collaboration Group
;
2019
Abstract
An abnormal structural form of glycogen (with less branching points or amylopectin-like polysaccharide) called polyglucosan (PG) may accumulate in various tissues such as striated and smooth muscles, brain, nerve, liver and skin, and cause a group of nine different genetic disorders manifesting with a variety of clinical phenotypes that affect mainly the nervous system (Lafora disease, adult PG body disease), the heart (glycogen storage disease type XV, hypertrophic cardiomyopathy type 6, PG body myopathy type 1) and the skeletal muscle (glycogen storage disease type IV, glycogen storage disease type VII, PG body myopathy type 2), depending on the organs which are mostly affected by the PG aggregates. The pathological feature of PG storage in tissues is a hallmark of these disorders. Whole-genome sequencing has allowed to obtain a diagnosis in a large number of patients with a previously unrecognized disorder. We describe the clinical, pathological and molecular features of these genetic disorders, for many of which the pathological mechanisms underlying the corresponding mutant gene have been investigated and, at least in part, understood.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.