We investigate the impact of dynamical streams and substructure on estimates of the local escape speed and total mass of Milky-Way-mass galaxies from modelling the high-velocity tail of local halo stars. We use a suite of high-resolution magnetohydrodynamical cosmological zoom-in simulations that resolve phase space substructure in local volumes around solar-like positions. We show that phase space structure varies significantly between positions in individual galaxies and across the suite. Substructure populates the high-velocity tail unevenly and leads to discrepancies in the mass estimates. We show that a combination of streams, sample noise, and truncation of the high-velocity tail below the escape speed leads to a distribution of mass estimates with a median that falls below the true value by similar to 20 per cent, and a spread of a factor of 2 across the suite. Correcting for these biases, we derive a revised value for the Milky Way mass presented in Deason et al. of 1.29(-0.47)(+0.37) x 10(12) M-circle dot.
Grand, R.J.J., Deason, A.J., White, S.D.M., Simpson, C.M., Gómez, F.A., Marinacci, F., et al. (2019). The effects of dynamical substructure on Milky Way mass estimates from the high-velocity tail of the local stellar halo. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. LETTERS, 487(1), L72-L76 [10.1093/mnrasl/slz092].
The effects of dynamical substructure on Milky Way mass estimates from the high-velocity tail of the local stellar halo
Marinacci, FedericoMembro del Collaboration Group
;
2019
Abstract
We investigate the impact of dynamical streams and substructure on estimates of the local escape speed and total mass of Milky-Way-mass galaxies from modelling the high-velocity tail of local halo stars. We use a suite of high-resolution magnetohydrodynamical cosmological zoom-in simulations that resolve phase space substructure in local volumes around solar-like positions. We show that phase space structure varies significantly between positions in individual galaxies and across the suite. Substructure populates the high-velocity tail unevenly and leads to discrepancies in the mass estimates. We show that a combination of streams, sample noise, and truncation of the high-velocity tail below the escape speed leads to a distribution of mass estimates with a median that falls below the true value by similar to 20 per cent, and a spread of a factor of 2 across the suite. Correcting for these biases, we derive a revised value for the Milky Way mass presented in Deason et al. of 1.29(-0.47)(+0.37) x 10(12) M-circle dot.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


