According to recent evidence, oscillations in the alpha-band (8-14 Hz) play an active role in attention via allocation of cortical resources: decrease in alpha activity enhances neural processes in task-relevant regions, while increase in alpha activity reduces processing in task-irrelevant regions. Here, we analyzed changes in alpha-band power of 13-channel electroencephalogram (EEG) acquired from 30 subjects while performing four tasks that differently engaged visual, computational and motor attentional components. The complete (visual + computational + motor) task required to read and solve an arithmetical operation and provide a motor response; three simplified tasks involved a subset of these components (visual + computational task, visual task, motor task). Taskrelated changes in alpha power were quantified by aggregating electrodes into two main regions (fronto-central and parieto-occipital), to test regional specificity of alpha modulation depending on the involved attentional aspects. Independent Component Analysis (ICA) was applied to discover the main independent processes accounting for alpha power over the two scalp regions. Furthermore, we performed analysis of Heart Rate Variability (HRV) from one electrocardiogram signal acquired simultaneously with EEG, to test autonomic reaction to attentional loads. Results showed that alpha power modulation over the two scalp regions not only reflected the number of involved attentional components (the larger their number the larger the alpha power suppression) but was also fine-tuned by the nature of the recruited mechanisms (visual, computational, motor) relative to the functional specification of the regions. ICA revealed topologically dissimilar and differently attention-regulated processes of alpha power over the two regions. HRV indexes were less sensitive to different attentional aspects compared to alpha power, with vagal activity index presenting larger changes. This study contributes to improve our understanding of the electroencephalographic and autonomic correlates of attention and may have practical implications in neurofeedback, brain-computer interfaces, neuroergonomics as well as in clinical practice and neuroscience research exploring attention-deficit disorders.

Modulation of brain alpha rhythm and heart rate variability by attention-related mechanisms

Magosso E.
;
Ricci G.;Ursino M.
2019

Abstract

According to recent evidence, oscillations in the alpha-band (8-14 Hz) play an active role in attention via allocation of cortical resources: decrease in alpha activity enhances neural processes in task-relevant regions, while increase in alpha activity reduces processing in task-irrelevant regions. Here, we analyzed changes in alpha-band power of 13-channel electroencephalogram (EEG) acquired from 30 subjects while performing four tasks that differently engaged visual, computational and motor attentional components. The complete (visual + computational + motor) task required to read and solve an arithmetical operation and provide a motor response; three simplified tasks involved a subset of these components (visual + computational task, visual task, motor task). Taskrelated changes in alpha power were quantified by aggregating electrodes into two main regions (fronto-central and parieto-occipital), to test regional specificity of alpha modulation depending on the involved attentional aspects. Independent Component Analysis (ICA) was applied to discover the main independent processes accounting for alpha power over the two scalp regions. Furthermore, we performed analysis of Heart Rate Variability (HRV) from one electrocardiogram signal acquired simultaneously with EEG, to test autonomic reaction to attentional loads. Results showed that alpha power modulation over the two scalp regions not only reflected the number of involved attentional components (the larger their number the larger the alpha power suppression) but was also fine-tuned by the nature of the recruited mechanisms (visual, computational, motor) relative to the functional specification of the regions. ICA revealed topologically dissimilar and differently attention-regulated processes of alpha power over the two regions. HRV indexes were less sensitive to different attentional aspects compared to alpha power, with vagal activity index presenting larger changes. This study contributes to improve our understanding of the electroencephalographic and autonomic correlates of attention and may have practical implications in neurofeedback, brain-computer interfaces, neuroergonomics as well as in clinical practice and neuroscience research exploring attention-deficit disorders.
2019
Magosso E.; Ricci G.; Ursino M.
File in questo prodotto:
File Dimensione Formato  
AIMSNeurosci_2019.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Creative commons
Dimensione 1.51 MB
Formato Adobe PDF
1.51 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/713270
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact