The dark matter velocity distribution in the Solar neighbourhood is an important astrophysical input which enters in the predicted event rate of dark matter direct detection experiments. It has been recently suggested that the local dark matter velocity distribution can be inferred from that of old or metal-poor stars in the Milky Way. We investigate this potential relation using six high resolution magneto-hydrodynamical simulations of Milky Way-like galaxies of the Auriga project. We do not find any correlation between the velocity distributions of dark matter and old stars in the Solar neighbourhood. Likewise, there are no strong correlations between the local velocity distributions of dark matter and metal-poor stars selected by applying reasonable cuts on metallicity. In some simulated galaxies, extremely metal-poor stars have a velocity distribution that is statistically consistent with that of the dark matter, but the sample of such stars is so small that we cannot draw any strong conclusions.

On the correlation between the local dark matter and stellar velocities

Marinacci F.
Membro del Collaboration Group
;
2019

Abstract

The dark matter velocity distribution in the Solar neighbourhood is an important astrophysical input which enters in the predicted event rate of dark matter direct detection experiments. It has been recently suggested that the local dark matter velocity distribution can be inferred from that of old or metal-poor stars in the Milky Way. We investigate this potential relation using six high resolution magneto-hydrodynamical simulations of Milky Way-like galaxies of the Auriga project. We do not find any correlation between the velocity distributions of dark matter and old stars in the Solar neighbourhood. Likewise, there are no strong correlations between the local velocity distributions of dark matter and metal-poor stars selected by applying reasonable cuts on metallicity. In some simulated galaxies, extremely metal-poor stars have a velocity distribution that is statistically consistent with that of the dark matter, but the sample of such stars is so small that we cannot draw any strong conclusions.
2019
Bozorgnia N.; Fattahi A.; Cerdeno D.G.; Frenk C.S.; Gomez F.A.; Grand R.J.J.; Marinacci F.; Pakmor R.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/712804
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 9
social impact