We study the geometry of some moduli spaces of twisted sheaves on K3 surfaces. In particular we introduce induced automorphisms from a K3 surface on moduli spaces of twisted sheaves on this K3 surface. As an application we prove the unirationality of moduli spaces of irreducible holomorphic symplectic manifolds of K3[2]-type admitting non-symplectic involutions with invariant lattices U(2) ⊕ D4(−1) or U(2) ⊕ E8(−2). This complements the results obtained in [43], [13], and the results from [29] about the geometry of irreducible holomorphic symplectic (IHS) four-folds constructed using the Hilbert scheme of (1, 1) conics on Verra four-folds. As a byproduct we find that IHS four-folds of K3[2]-type with Picard lattice U(2) ⊕ E8(−2) naturally contain non-nodal Enriques surfaces.
Camere, C., Kapustka, G., Kapustka, M., Mongardi, G. (2019). Verra Four-Folds, Twisted Sheaves, and the Last Involution. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019(21), 6661-6710 [10.1093/imrn/rnx327].
Verra Four-Folds, Twisted Sheaves, and the Last Involution
Grzegorz Kapustka;Michał Kapustka;Giovanni Mongardi
2019
Abstract
We study the geometry of some moduli spaces of twisted sheaves on K3 surfaces. In particular we introduce induced automorphisms from a K3 surface on moduli spaces of twisted sheaves on this K3 surface. As an application we prove the unirationality of moduli spaces of irreducible holomorphic symplectic manifolds of K3[2]-type admitting non-symplectic involutions with invariant lattices U(2) ⊕ D4(−1) or U(2) ⊕ E8(−2). This complements the results obtained in [43], [13], and the results from [29] about the geometry of irreducible holomorphic symplectic (IHS) four-folds constructed using the Hilbert scheme of (1, 1) conics on Verra four-folds. As a byproduct we find that IHS four-folds of K3[2]-type with Picard lattice U(2) ⊕ E8(−2) naturally contain non-nodal Enriques surfaces.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.