The partial differential equation of Gaussian diffusion is generalized by using the time-fractional derivative of distributed order between 0 and 1, in both the Riemann-Liouville (R-L) and the Caputo (C) sense. For a general distribution of time orders we provide the fundamental solution, that is still a probability density, in terms of an integral of Laplace type. The kernel depends on the type of the assumed fractional derivative except for the single order case where the two approaches turn to be equivalent. We consider with some detail two cases of order distribution: the double-order and the uniformly distributed order. For these cases we exhibit plots of the corresponding fundamental solutions and their variance, pointing out the remarkable difference between the two approaches for small and large times.
F. Mainardi, A. Mura, G. Pagnini, R. Gorenflo (2008). Time-fractional diffusion of distributed order. JOURNAL OF VIBRATION AND CONTROL, 14, 1267-1290 [10.1177/1077546307087452].
Time-fractional diffusion of distributed order
MAINARDI, FRANCESCO;MURA, ANTONIO;
2008
Abstract
The partial differential equation of Gaussian diffusion is generalized by using the time-fractional derivative of distributed order between 0 and 1, in both the Riemann-Liouville (R-L) and the Caputo (C) sense. For a general distribution of time orders we provide the fundamental solution, that is still a probability density, in terms of an integral of Laplace type. The kernel depends on the type of the assumed fractional derivative except for the single order case where the two approaches turn to be equivalent. We consider with some detail two cases of order distribution: the double-order and the uniformly distributed order. For these cases we exhibit plots of the corresponding fundamental solutions and their variance, pointing out the remarkable difference between the two approaches for small and large times.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.