This article shows how to use performance and data profile benchmarking tools to improve the performance of algorithms. We propose to achieve this goal by defining and approximately solving suitable optimization problems involving the parameters of the algorithm under consideration. Because these problems do not have derivatives and may involve integer variables, we suggest using a mixed-integer derivative-free optimizer for this task. A numerical illustration is presented (using the BFO package), which indicates that the obtained gains are potentially significant.

A note on using performance and data profiles for training algorithms

Porcelli M.;
2019

Abstract

This article shows how to use performance and data profile benchmarking tools to improve the performance of algorithms. We propose to achieve this goal by defining and approximately solving suitable optimization problems involving the parameters of the algorithm under consideration. Because these problems do not have derivatives and may involve integer variables, we suggest using a mixed-integer derivative-free optimizer for this task. A numerical illustration is presented (using the BFO package), which indicates that the obtained gains are potentially significant.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/711344
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact