Harvesting bone for autologous grafting is a daily problem encountered by craniofacial and oral surgeons. Stem cells derived from human dental pulp are able to differentiate in osteoblasts and are a potential source of autologous bone produced in vitro. However, as stem cells are characterized by self-renewing and commitment in several cellular subtypes (ie, pluripotential differentiation), some concerns may arise as regards their potential uncontrolled proliferation. To screen the behavior of osteoblasts derived from human pulpar stem cells (ODHPSCs), we used microarray techniques to identify genes that are differently regulated in ODHPSC in comparison to normal osteoblasts (NOs). Osteoblasts derived from human pulpar stem cells were obtained from human dental pulp, and cells were selected using a cytometer. The cell profile was c-kit+/CD34+/STRO-1+/CD45-. These cells were capable of differentiation of osteoblasts in vitro. By using DNA microarrays containing 19,200 genes, we identified in ODHPSC some genes whose expression was significantly up- and downregulated compared to NO. The differentially expressed genes have different functional activities: (a) cell differentiation, (b) developmental maturation, (c) cell adhesion, and (d) production of cytoskeleton elements. Thus, some molecular differences exist between NO and ODHPSC, although the previously considered histologic parameters show a normal phenotype.

Carinci F, Papaccio G, Laino G, Palmieri A, Brunelli G, D'Aquino R, et al. (2008). Comparison between genetic portraits of osteoblasts derived from primary cultures and osteoblasts obtained from human pulpar stem cells. THE JOURNAL OF CRANIOFACIAL SURGERY, 19, 616-625 [10.1097/SCS.0b013e31816aabc8].

Comparison between genetic portraits of osteoblasts derived from primary cultures and osteoblasts obtained from human pulpar stem cells

PALMIERI, ANNALISA;SCAPOLI, LUCA;MARTINELLI, MARCELLA;PEZZETTI, FURIO
2008

Abstract

Harvesting bone for autologous grafting is a daily problem encountered by craniofacial and oral surgeons. Stem cells derived from human dental pulp are able to differentiate in osteoblasts and are a potential source of autologous bone produced in vitro. However, as stem cells are characterized by self-renewing and commitment in several cellular subtypes (ie, pluripotential differentiation), some concerns may arise as regards their potential uncontrolled proliferation. To screen the behavior of osteoblasts derived from human pulpar stem cells (ODHPSCs), we used microarray techniques to identify genes that are differently regulated in ODHPSC in comparison to normal osteoblasts (NOs). Osteoblasts derived from human pulpar stem cells were obtained from human dental pulp, and cells were selected using a cytometer. The cell profile was c-kit+/CD34+/STRO-1+/CD45-. These cells were capable of differentiation of osteoblasts in vitro. By using DNA microarrays containing 19,200 genes, we identified in ODHPSC some genes whose expression was significantly up- and downregulated compared to NO. The differentially expressed genes have different functional activities: (a) cell differentiation, (b) developmental maturation, (c) cell adhesion, and (d) production of cytoskeleton elements. Thus, some molecular differences exist between NO and ODHPSC, although the previously considered histologic parameters show a normal phenotype.
2008
Carinci F, Papaccio G, Laino G, Palmieri A, Brunelli G, D'Aquino R, et al. (2008). Comparison between genetic portraits of osteoblasts derived from primary cultures and osteoblasts obtained from human pulpar stem cells. THE JOURNAL OF CRANIOFACIAL SURGERY, 19, 616-625 [10.1097/SCS.0b013e31816aabc8].
Carinci F; Papaccio G; Laino G; Palmieri A; Brunelli G; D'Aquino R; Graziano A; Lanza V; Scapoli L; Martinelli M; Pezzetti F.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/71010
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 40
social impact