Bissiri et al. (2016) propose a framework for general Bayesian inference using loss functions which connect parameters with data, and the updated posterior distribution is characterized through a set of axioms. The result, which is restricted to finite probability spaces, is extended in this paper to spaces which are subsets of the real line.

Bissiri P.G., Walker S.G. (2019). On general Bayesian inference using loss functions. STATISTICS & PROBABILITY LETTERS, 152, 89-91 [10.1016/j.spl.2019.04.005].

On general Bayesian inference using loss functions

Bissiri P. G.;
2019

Abstract

Bissiri et al. (2016) propose a framework for general Bayesian inference using loss functions which connect parameters with data, and the updated posterior distribution is characterized through a set of axioms. The result, which is restricted to finite probability spaces, is extended in this paper to spaces which are subsets of the real line.
2019
Bissiri P.G., Walker S.G. (2019). On general Bayesian inference using loss functions. STATISTICS & PROBABILITY LETTERS, 152, 89-91 [10.1016/j.spl.2019.04.005].
Bissiri P.G.; Walker S.G.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/709760
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact