Cell-based in vitro biological models traditionally use monolayer cell cultures grown over plastic surfaces bathing in static media. Higher fidelity to a natural biological tissue is expected to result from growing the cells in a three-dimensional (3D) matrix. However, due to the decreased rate of diffusion inherent to increased distances within a tridimensional space, proper fluidic conditions are needed in this setting to better approximate a physiological environment. To this aim, we here propose a prototypal dynamic cell culture platform for the automatic medium replacement, via periodic perfusion flow, in a human umbilical vein endothelial cell (HUVECs) culture seeded in a Geltrex (TM) matrix. A state-of-the-art angiogenesis assay performed in these dynamic conditions showed sizable effects with respect to conventional static control cultures, with significantly enhanced pro-(dual antiplatelet therapy [DAPT]) and anti-(EDTA) angiogenic compound activity. In particular, dynamic culture conditions (a) enhance the 3D-organization of HUVECs into microtubule structure; (b) accelerate and improve endothelial tube formation by HUVECs in the presence of DAPT; (c) are able to completely revert the blocking effects of EDTA. These evidence emphasize the need of setting proper fluidic conditions for a better approximation of a physiological environment as an appropriate evolution of current cell culture paradigms.
Lovecchio J., Pannella M., Giardino L., Calza L., Giordano E. (2020). A dynamic culture platform enhances the efficiency of the 3D HUVEC-based tube formation assay. BIOTECHNOLOGY AND BIOENGINEERING, 117(3), 789-797 [10.1002/bit.27227].
A dynamic culture platform enhances the efficiency of the 3D HUVEC-based tube formation assay
Lovecchio J.
;Pannella M.;Giardino L.;Calza L.;Giordano E.
2020
Abstract
Cell-based in vitro biological models traditionally use monolayer cell cultures grown over plastic surfaces bathing in static media. Higher fidelity to a natural biological tissue is expected to result from growing the cells in a three-dimensional (3D) matrix. However, due to the decreased rate of diffusion inherent to increased distances within a tridimensional space, proper fluidic conditions are needed in this setting to better approximate a physiological environment. To this aim, we here propose a prototypal dynamic cell culture platform for the automatic medium replacement, via periodic perfusion flow, in a human umbilical vein endothelial cell (HUVECs) culture seeded in a Geltrex (TM) matrix. A state-of-the-art angiogenesis assay performed in these dynamic conditions showed sizable effects with respect to conventional static control cultures, with significantly enhanced pro-(dual antiplatelet therapy [DAPT]) and anti-(EDTA) angiogenic compound activity. In particular, dynamic culture conditions (a) enhance the 3D-organization of HUVECs into microtubule structure; (b) accelerate and improve endothelial tube formation by HUVECs in the presence of DAPT; (c) are able to completely revert the blocking effects of EDTA. These evidence emphasize the need of setting proper fluidic conditions for a better approximation of a physiological environment as an appropriate evolution of current cell culture paradigms.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.