The availability of engineered biological tissues holds great potential for both clinical applications and basic research in a life science laboratory. A prototype standalone perfusion/compression bioreactor system was proposed to address the osteogenic commitment of stem cells seeded onboard of 3D chitosan-graphene (CHT/G) templates. Testing involved the coordinated administration of a 1 mL/min medium flow rate together with dynamic compression (1% strain at 1 Hz; applied twice daily for 30 min) for one week. When compared to traditional static culture conditions, the application of perfusion and compression stimuli to human bone marrow stem cells using the 3D CHT/G template scaffold induced a sizable effect. After using the dynamic culture protocol, there was evidence of a larger number of viable cells within the inner core of the scaffold and of enhanced extracellular matrix mineralization. These observations show that our novel device would be suitable for addressing and investigating the osteogenic phenotype commitment of stem cells, for both potential clinical applications and basic research.
Lovecchio J., Gargiulo P., Vargas Luna J.L., Giordano E., Sigurjonsson O.E. (2019). A standalone bioreactor system to deliver compressive load under perfusion flow to hBMSC-seeded 3D chitosan-graphene templates. SCIENTIFIC REPORTS, 9, 1-11 [10.1038/s41598-019-53319-7].
A standalone bioreactor system to deliver compressive load under perfusion flow to hBMSC-seeded 3D chitosan-graphene templates
Lovecchio J.
;Giordano E.;
2019
Abstract
The availability of engineered biological tissues holds great potential for both clinical applications and basic research in a life science laboratory. A prototype standalone perfusion/compression bioreactor system was proposed to address the osteogenic commitment of stem cells seeded onboard of 3D chitosan-graphene (CHT/G) templates. Testing involved the coordinated administration of a 1 mL/min medium flow rate together with dynamic compression (1% strain at 1 Hz; applied twice daily for 30 min) for one week. When compared to traditional static culture conditions, the application of perfusion and compression stimuli to human bone marrow stem cells using the 3D CHT/G template scaffold induced a sizable effect. After using the dynamic culture protocol, there was evidence of a larger number of viable cells within the inner core of the scaffold and of enhanced extracellular matrix mineralization. These observations show that our novel device would be suitable for addressing and investigating the osteogenic phenotype commitment of stem cells, for both potential clinical applications and basic research.File | Dimensione | Formato | |
---|---|---|---|
s41598-019-53319-7.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
3.55 MB
Formato
Adobe PDF
|
3.55 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.