Cold is an abiotic stress seriously threatening crop productivity by decreasing biomass production. The pollen tube is a target of cold stress, but also a useful model to address questions on cell wall biosynthesis. We here provide (immuno)cytological data relative to the impact of cold on the pollen tube cell wall. We clearly show that the growth pattern is severely affected by the stress, since the typical pulsed-growth mechanism accompanied by the periodic deposition of pectin rings is absent/severely reduced. Additionally, pectins and cellulose accumulate in bulges provoked by the stress, while callose, which colocalizes with pectins in the periodic rings formed during pulsed growth, accumulates randomly in the stressed samples. The altered distribution of the cell wall components is accompanied by differences in the localization of glucan synthases: cellulose synthase shows a more diffuse localization, while callose synthase shows a more frequent cytoplasmic accumulation, thereby denoting a failure in plasma membrane insertion. The cell wall observations are complemented by the analysis of intracellular Ca 2+ , pH and reactive oxygen species (ROS): while in the case of pH no major differences are observed, a less focused Ca 2+ and ROS gradients are present in the stressed samples. The standard oscillatory growth of pollen tubes is recovered by transient changes of turgor pressure induced by hypoosmotic media. Overall our data contribute to the understanding of the impact that cold stress has on the normal development of the pollen tube and unveil the cell wall-related aberrant features accompanying the observed alterations.

Cold stress affects cell wall deposition and growth pattern in tobacco pollen tubes

Parrotta, Luigi;
2019

Abstract

Cold is an abiotic stress seriously threatening crop productivity by decreasing biomass production. The pollen tube is a target of cold stress, but also a useful model to address questions on cell wall biosynthesis. We here provide (immuno)cytological data relative to the impact of cold on the pollen tube cell wall. We clearly show that the growth pattern is severely affected by the stress, since the typical pulsed-growth mechanism accompanied by the periodic deposition of pectin rings is absent/severely reduced. Additionally, pectins and cellulose accumulate in bulges provoked by the stress, while callose, which colocalizes with pectins in the periodic rings formed during pulsed growth, accumulates randomly in the stressed samples. The altered distribution of the cell wall components is accompanied by differences in the localization of glucan synthases: cellulose synthase shows a more diffuse localization, while callose synthase shows a more frequent cytoplasmic accumulation, thereby denoting a failure in plasma membrane insertion. The cell wall observations are complemented by the analysis of intracellular Ca 2+ , pH and reactive oxygen species (ROS): while in the case of pH no major differences are observed, a less focused Ca 2+ and ROS gradients are present in the stressed samples. The standard oscillatory growth of pollen tubes is recovered by transient changes of turgor pressure induced by hypoosmotic media. Overall our data contribute to the understanding of the impact that cold stress has on the normal development of the pollen tube and unveil the cell wall-related aberrant features accompanying the observed alterations.
2019
Parrotta, Luigi; Faleri, Claudia; Guerriero, Gea; Cai, Giampiero*
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/707319
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
social impact