We prove a one-dimensional symmetry result for a weighted Dirichlet-to-Neumann problem arising in a model for water waves in dimension 3. More precisely we prove that minimizers and bounded monotone solutions depend on only one Euclidean variable. The analogue of this result for the 2-dimensional case (and without weights) was established in 16. In this paper a crucial ingredient in the proof is given by an energy estimate for minimizers obtained via a comparison argument.

Cinti E., Miraglio P., Valdinoci E. (2020). One-Dimensional Symmetry for the Solutions of a Three-Dimensional Water Wave Problem. THE JOURNAL OF GEOMETRIC ANALYSIS, 30(2), 1804-1835 [10.1007/s12220-019-00279-z].

One-Dimensional Symmetry for the Solutions of a Three-Dimensional Water Wave Problem

Cinti E.;Valdinoci E.
2020

Abstract

We prove a one-dimensional symmetry result for a weighted Dirichlet-to-Neumann problem arising in a model for water waves in dimension 3. More precisely we prove that minimizers and bounded monotone solutions depend on only one Euclidean variable. The analogue of this result for the 2-dimensional case (and without weights) was established in 16. In this paper a crucial ingredient in the proof is given by an energy estimate for minimizers obtained via a comparison argument.
2020
Cinti E., Miraglio P., Valdinoci E. (2020). One-Dimensional Symmetry for the Solutions of a Three-Dimensional Water Wave Problem. THE JOURNAL OF GEOMETRIC ANALYSIS, 30(2), 1804-1835 [10.1007/s12220-019-00279-z].
Cinti E.; Miraglio P.; Valdinoci E.
File in questo prodotto:
File Dimensione Formato  
WW-2019.pdf

accesso aperto

Tipo: Preprint
Licenza: Licenza per accesso libero gratuito
Dimensione 394.36 kB
Formato Adobe PDF
394.36 kB Adobe PDF Visualizza/Apri
WW-FIN.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 577.96 kB
Formato Adobe PDF
577.96 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/707210
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact