The modeling of the effects of bending on single Nb3Sn strand DC performance (IC, n index) is presented for a bronze-route strand subjected to the same loading conditions as in an experiment performed at JAEA Naka, Japan [Y. Nunoya, et al., IEEE TAS 14 (2004) 1468–1472]. The strand is discretized in strand elements (SE) representing groups of twisted filaments in the bronze matrix, and in portions of the outer Cu annulus, electro-magnetically coupled in the THELMA code. The 3-D strain map in the filament region is computed with a newly developed, detailed thermo-mechanical model accounting for non-linear, temperature dependent material characteristics. With respect to our previous analysis [P.L.Ribani, et al., IEEE TAS 16 (2006) 860–863] several new updated ingredients, besides the new thermo-mechanical model, are used here, including more accurate thermal and mechanical properties for the materials, a jacket-like model for the outer Cu layer, IC and n index (interpolative) scaling from Durham University. The simulation results show an improved agreement with the experiments, in the degradation of the single-strand performance due to bending.

R. Zanino, D.P. Boso, M. Lefik, P.L. Ribani, L. Savoldi Richard, B.A. Schrefler (2008). Analysis of bending effectson performance degradation of ITER-relevant Nb3Sn strand using the THELMA code. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 18 (2), 1067-1071 [10.1109/TASC.2008.921336].

Analysis of bending effectson performance degradation of ITER-relevant Nb3Sn strand using the THELMA code

RIBANI, PIER LUIGI;
2008

Abstract

The modeling of the effects of bending on single Nb3Sn strand DC performance (IC, n index) is presented for a bronze-route strand subjected to the same loading conditions as in an experiment performed at JAEA Naka, Japan [Y. Nunoya, et al., IEEE TAS 14 (2004) 1468–1472]. The strand is discretized in strand elements (SE) representing groups of twisted filaments in the bronze matrix, and in portions of the outer Cu annulus, electro-magnetically coupled in the THELMA code. The 3-D strain map in the filament region is computed with a newly developed, detailed thermo-mechanical model accounting for non-linear, temperature dependent material characteristics. With respect to our previous analysis [P.L.Ribani, et al., IEEE TAS 16 (2006) 860–863] several new updated ingredients, besides the new thermo-mechanical model, are used here, including more accurate thermal and mechanical properties for the materials, a jacket-like model for the outer Cu layer, IC and n index (interpolative) scaling from Durham University. The simulation results show an improved agreement with the experiments, in the degradation of the single-strand performance due to bending.
2008
R. Zanino, D.P. Boso, M. Lefik, P.L. Ribani, L. Savoldi Richard, B.A. Schrefler (2008). Analysis of bending effectson performance degradation of ITER-relevant Nb3Sn strand using the THELMA code. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 18 (2), 1067-1071 [10.1109/TASC.2008.921336].
R. Zanino; D.P. Boso; M. Lefik; P.L. Ribani; L. Savoldi Richard; B.A. Schrefler
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/70645
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 12
social impact