The use of heritage point cloud for documentation and dissemination purposes is nowadays increasing. The association of semantic information to 3D data by means of automated classification methods can help to characterize, describe and better interpret the object under study. In the last decades, machine learning methods have brought significant progress to classification procedures. However, the topic of cultural heritage has not been fully explored yet. This paper presents a research for the classification of heritage point clouds using different supervised learning approaches (Machine and Deep learning ones). The classification is aimed at automatically recognizing architectural components such as columns, facades or windows in large datasets. For each case study and employed classification method, different accuracy metrics are calculated and compared.
Grilli, E., Özdemir, E., Remondino, F. (2019). APPLICATION OF MACHINE AND DEEP LEARNING STRATEGIES FOR THE CLASSIFICATION OF HERITAGE POINT CLOUDS [10.5194/isprs-archives-XLII-4-W18-447-2019].
APPLICATION OF MACHINE AND DEEP LEARNING STRATEGIES FOR THE CLASSIFICATION OF HERITAGE POINT CLOUDS
Grilli, E.
Writing – Original Draft Preparation
;Remondino, F.
Supervision
2019
Abstract
The use of heritage point cloud for documentation and dissemination purposes is nowadays increasing. The association of semantic information to 3D data by means of automated classification methods can help to characterize, describe and better interpret the object under study. In the last decades, machine learning methods have brought significant progress to classification procedures. However, the topic of cultural heritage has not been fully explored yet. This paper presents a research for the classification of heritage point clouds using different supervised learning approaches (Machine and Deep learning ones). The classification is aimed at automatically recognizing architectural components such as columns, facades or windows in large datasets. For each case study and employed classification method, different accuracy metrics are calculated and compared.File | Dimensione | Formato | |
---|---|---|---|
APPLICATION_OF_MACHINE_AND_DEEP_LEARNING_STRATEGIE.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
6.89 MB
Formato
Adobe PDF
|
6.89 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.