A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and fully validated, according to U.S. Food and Drug Administration guidance, for the simultaneous determination of phenylmercapturic acid, benzylmercapturic acid and o-methylbenzyl mercapturic acid in human urine as biomarkers of exposure to benzene, toluene and xylenes (BTX). After solid phase extraction and LC separation, samples were analyzed by a triple-quadrupole mass spectrometer operated in negative ion mode, using isotope-labeled analogs as internal standards (ISs). The method meets all the validation criteria required. The limits of detection of the three analytes, ranging from 0.30 to 0.40microgl(-1), and the high throughput make the method suitable for the routine biological monitoring of co-exposure to BTX both in the occupational and environmental settings. The validated method was applied to assess exposure to BTX in a group of 354 urban traffic wardens.
Sabatini L, Barbieri A, Indiveri P, Mattioli S, Violante FS. (2008). Validation of an HPLC-MS/MS method for the simultaneous determination of phenylmercapturic acid, benzylmercapturic acid and o-methylbenzyl mercapturic acid in urine as biomarkers of exposure to benzene, toluene and xylenes. JOURNAL OF CHROMATOGRAPHY. B, 863, 115-122 [10.1016/j.jchromb.2008.01.022].
Validation of an HPLC-MS/MS method for the simultaneous determination of phenylmercapturic acid, benzylmercapturic acid and o-methylbenzyl mercapturic acid in urine as biomarkers of exposure to benzene, toluene and xylenes.
SABATINI, LAURA;BARBIERI, ANNA;INDIVERI, PAOLO;MATTIOLI, STEFANO;VIOLANTE, FRANCESCO SAVERIO
2008
Abstract
A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and fully validated, according to U.S. Food and Drug Administration guidance, for the simultaneous determination of phenylmercapturic acid, benzylmercapturic acid and o-methylbenzyl mercapturic acid in human urine as biomarkers of exposure to benzene, toluene and xylenes (BTX). After solid phase extraction and LC separation, samples were analyzed by a triple-quadrupole mass spectrometer operated in negative ion mode, using isotope-labeled analogs as internal standards (ISs). The method meets all the validation criteria required. The limits of detection of the three analytes, ranging from 0.30 to 0.40microgl(-1), and the high throughput make the method suitable for the routine biological monitoring of co-exposure to BTX both in the occupational and environmental settings. The validated method was applied to assess exposure to BTX in a group of 354 urban traffic wardens.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.