It is a common practice in industry to model the elasticity in flexible multibody dynamics, when the deformations are small, by means of a linear finite element approach and of a model condensation strategy. Taking into account the flexibility in multibody modelling may require computationally expensive numerical models to be managed. Proper shape functions are introduced in this paper to model the displacements of flexible slender beam components, without the need of any spatial discretization; a novel formulation of the flexible properties of beam-like components follows and a small size motion equation set can be obtained. Modelling aspects, from point location to constraint equations and to elastodynamic modelling, are discussed. An ideal quick return mechanism, properly actuated, is modelled as a test case to prove the effectiveness of the proposed approach.

Giuseppe Catania, Alessandro Zanarini (2019). Flexible Multibody System Dynamics by Means of a Spectral Based Meshless Approach. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 11(4), 757-806 [10.4208/aamm.OA-2018-0053].

Flexible Multibody System Dynamics by Means of a Spectral Based Meshless Approach

Giuseppe Catania
Methodology
;
Alessandro Zanarini
Writing – Review & Editing
2019

Abstract

It is a common practice in industry to model the elasticity in flexible multibody dynamics, when the deformations are small, by means of a linear finite element approach and of a model condensation strategy. Taking into account the flexibility in multibody modelling may require computationally expensive numerical models to be managed. Proper shape functions are introduced in this paper to model the displacements of flexible slender beam components, without the need of any spatial discretization; a novel formulation of the flexible properties of beam-like components follows and a small size motion equation set can be obtained. Modelling aspects, from point location to constraint equations and to elastodynamic modelling, are discussed. An ideal quick return mechanism, properly actuated, is modelled as a test case to prove the effectiveness of the proposed approach.
2019
Giuseppe Catania, Alessandro Zanarini (2019). Flexible Multibody System Dynamics by Means of a Spectral Based Meshless Approach. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 11(4), 757-806 [10.4208/aamm.OA-2018-0053].
Giuseppe Catania; Alessandro Zanarini
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/705412
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact