We analyze the effects of disorder on the correlation functions of one-dimensional quantum models of fermions and spins with long-range interactions that decay with distance x as a power law 1/x^a. Using a combination of analytical and numerical results, we demonstrate that power-law interactions imply a long- distance algebraic decay of correlations within disordered-localized phases, for all exponents a. The exponent of algebraic decay depends only on a, and not, e.g., on the strength of disorder. We find a similar algebraic localization for wave functions. These results are in contrast to expectations from short-range models and are of direct relevance for a variety of quantum mechanical systems in atomic, molecular, and solid-state physics.

Algebraic localization from power-law couplings in disordered quantum wires

Ercolessi, Elisa;
2019

Abstract

We analyze the effects of disorder on the correlation functions of one-dimensional quantum models of fermions and spins with long-range interactions that decay with distance x as a power law 1/x^a. Using a combination of analytical and numerical results, we demonstrate that power-law interactions imply a long- distance algebraic decay of correlations within disordered-localized phases, for all exponents a. The exponent of algebraic decay depends only on a, and not, e.g., on the strength of disorder. We find a similar algebraic localization for wave functions. These results are in contrast to expectations from short-range models and are of direct relevance for a variety of quantum mechanical systems in atomic, molecular, and solid-state physics.
Botzung, Thomas; Vodola, Davide; Naldesi, Piero; Müller, Markus; Ercolessi, Elisa; Pupillo, Guido
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/704129
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 14
social impact