Numerical simulations of turbulent channel flows, with or without additives, are limited in the extent of the Reynolds number Re and Deborah number De. The comparison of such simulations to theories of drag reduction, which are usually derived for asymptotically high Re and De, calls for some care. In this paper we present a study of drag reduction by rodlike polymers in a turbulent channel flow using direct numerical simulation and illustrate how these numerical results should be related to the recently developed theory.

Comparison of theory and direct numerical simulations of drag reduction by rodlike polymers in turbulent channel flows

DE ANGELIS, ELISABETTA;
2008

Abstract

Numerical simulations of turbulent channel flows, with or without additives, are limited in the extent of the Reynolds number Re and Deborah number De. The comparison of such simulations to theories of drag reduction, which are usually derived for asymptotically high Re and De, calls for some care. In this paper we present a study of drag reduction by rodlike polymers in a turbulent channel flow using direct numerical simulation and illustrate how these numerical results should be related to the recently developed theory.
2008
Benzi R.; Ching E.S.C.; De Angelis E.; and Procaccia I.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/70407
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 19
social impact